951 research outputs found
Diverse Spatial, Temporal, and Sexual Expression of Recently Duplicated Androgen-Binding Protein Genes in \u3ci\u3eMus musculus\u3c/i\u3e
Background
The genes for salivary androgen-binding protein (ABP) subunits have been evolving rapidly in ancestors of the house mouse Mus musculus, as evidenced both by recent and extensive gene duplication and by high ratios of nonsynonymous to synonymous nucleotide substitution rates. This makes ABP an appropriate model system with which to investigate how recent adaptive evolution of paralogous genes results in functional innovation (neofunctionalization). Results
It was our goal to find evidence for the expression of as many of the Abp paralogues in the mouse genome as possible. We observed expression of six Abpa paralogues and five Abpbg paralogues in ten glands and other organs located predominantly in the head and neck (olfactory lobe of the brain, three salivary glands, lacrimal gland, Harderian gland, vomeronasal organ, and major olfactory epithelium). These Abp paralogues differed dramatically in their specific expression in these different glands and in their sexual dimorphism of expression. We also studied the appearance of expression in both late-stage embryos and postnatal animals prior to puberty and found significantly different timing of the onset of expression among the various paralogues. Conclusion
The multiple changes in the spatial expression profile of these genes resulting in various combinations of expression in glands and other organs in the head and face of the mouse strongly suggest that neofunctionalization of these genes, driven by adaptive evolution, has occurred following duplication. The extensive diversification in expression of this family of proteins provides two lines of evidence for a pheromonal role for ABP: 1) different patterns of Abpa/Abpbg expression in different glands; and 2) sexual dimorphism in the expression of the paralogues in a subset of those glands. These expression patterns differ dramatically among various glands that are located almost exclusively in the head and neck, where the sensory organs are located. Since mice are nocturnal, it is expected that they will make extensive use of olfactory as opposed to visual cues. The glands expressing Abp paralogues produce secretions (lacrimal and salivary) or detect odors (MOE and VNO) and thus it appears highly likely that ABP proteins play a role in olfactory communication
Rapid Bursts of \u3ci\u3eAndrogen-Binding Protein (Abp)\u3c/i\u3e Gene Duplication Occurred Independently in Diverse Mammals
Background
The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results
Here, we interrogate the latest \u27finished\u27 mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. Conclusion
We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes\u27 participation in chemosensation and/or sexual identification
The democratic engagement of Britain's ethnic minorities
Democratic engagement is a multi-faceted phenomenon that embraces citizens' involvement with electoral politics, their participation in ‘conventional’ extra-parliamentary political activity, their satisfaction with democracy and trust in state institutions, and their rejection of the use of violence for political ends. Evidence from the 2010 BES and EMBES shows that there are important variations in patterns of democratic engagement across Britain's different ethnic-minority groups and across generations. Overall, ethnic-minority engagement is at a similar level to and moved by the same general factors that influence the political dispositions of whites. However, minority democratic engagement is also strongly affected by a set of distinctive ethnic-minority perceptions and experiences, associated particularly with discrimination and patterns of minority and majority cultural engagement. Second-generation minorities who grew up in Britain are less, rather than more, likely to be engaged
Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array
We present the development of a novel 11328 pixel silicon photomultiplier
(SiPM) camera for use with a ground-based Cherenkov telescope with
Schwarzschild-Couder optics as a possible medium-sized telescope for the
Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower
images with more than twice the optical resolution of cameras that are used in
current Cherenkov telescopes. Advantages of the higher resolution will be a
better event reconstruction yielding improved background suppression and
angular resolution of the reconstructed gamma-ray events, which is crucial in
morphology studies of, for example, Galactic particle accelerators and the
search for gamma-ray halos around extragalactic sources. Packing such a large
number of pixels into an area of only half a square meter and having a fast
readout directly attached to the back of the sensors is a challenging task. For
the prototype camera development, SiPMs from Hamamatsu with through silicon via
(TSV) technology are used. We give a status report of the camera design and
highlight a number of technological advancements that made this development
possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
Trouble at the top: The construction of a tenant identity in the governance of social housing organizations
The project of citizen governance has transformed the social housing sector in England where 20,000 tenants now sit as directors on the boards of housing associations, but the entrance of social housing tenants to the boardroom has aroused opposition from the chief executives of housing companies and triggered regulatory intervention from government inspectors. This paper investigates the cause of these tensions through a theoretical framework drawn from the work of feminist philosopher Judith Butler. It interprets housing governance as an identificatory project with the power to constitute tenant directors as regulated subjects, and presents evidence to suggest that this project of identity fails to completely enclose its subject, allowing tenant directors to engage in ‘identity work’ that threatens the supposed unity of the board. The paper charts the development of antagonism and political tension in the board rooms of housing companies to present an innovative account of the construction and contestation of identities in housing governance
The Sensitivity of HAWC to High-Mass Dark Matter Annihilations
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view
detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in
central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC
will observe gamma rays and cosmic rays with an array of water Cherenkov
detectors. The full HAWC array is scheduled to be operational in Spring 2015.
In this paper, we study the HAWC sensitivity to the gamma-ray signatures of
high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be
sensitive to diverse searches for dark matter annihilation, including
annihilation from extended dark matter sources, the diffuse gamma-ray emission
from dark matter annihilation, and gamma-ray emission from non-luminous dark
matter subhalos. Here we consider the HAWC sensitivity to a subset of these
sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the
Galactic center. We simulate the HAWC response to gamma rays from these sources
in several well-motivated dark matter annihilation channels. If no gamma-ray
excess is observed, we show the limits HAWC can place on the dark matter
cross-section from these sources. In particular, in the case of dark matter
annihilation into gauge bosons, HAWC will be able to detect a narrow range of
dark matter masses to cross-sections below thermal. HAWC should also be
sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The
constraints placed by HAWC on the dark matter cross-section from known sources
should be competitive with current limits in the mass range where HAWC has
similar sensitivity. HAWC can additionally explore higher dark matter masses
than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR
Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD
A detailed study is made of four dimensional SU(2) gauge theory with static
adjoint ``quarks'' in the context of string breaking. A tadpole-improved action
is used to do simulations on lattices with coarse spatial spacings ,
allowing the static potential to be probed at large separations at a
dramatically reduced computational cost. Highly anisotropic lattices are used,
with fine temporal spacings , in order to assess the behavior of the
time-dependent effective potentials. The lattice spacings are determined from
the potentials for quarks in the fundamental representation. Simulations of the
Wilson loop in the adjoint representation are done, and the energies of
magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are
calculated, which set the energy scale for string breaking. Correlators of
gauge-fixed static quark propagators, without a connecting string of spatial
links, are analyzed. Correlation functions of gluelump pairs are also
considered; similar correlators have recently been proposed for observing
string breaking in full QCD and other models. A thorough discussion of the
relevance of Wilson loops over other operators for studies of string breaking
is presented, using the simulation results presented here to support a number
of new arguments.Comment: 22 pages, 14 figure
Proliferation and estrogen signaling can distinguish patients at risk for early versus late relapse among estrogen receptor positive breast cancers
Introduction: We examined if a combination of proliferation markers and estrogen receptor (ER) activity could predict early versus late relapses in ER-positive breast cancer and inform the choice and length of adjuvant endocrine therapy.
Methods: Baseline affymetrix gene-expression profiles from ER-positive patients who received no systemic therapy (n = 559), adjuvant tamoxifen for 5 years (cohort-1: n = 683, cohort-2: n = 282) and from 58 patients treated with neoadjuvant letrozole for 3 months (gene-expression available at baseline, 14 and 90 days) were analyzed. A proliferation score based on the expression of mitotic kinases (MKS) and an ER-related score (ERS) adopted from Oncotype DX® were calculated. The same analysis was performed using the Genomic Grade Index as proliferation marker and the luminal gene score from the PAM50 classifier as measure of estrogen-related genes. Median values were used to define low and high marker groups and four combinations were created. Relapses were grouped into time cohorts of 0-2.5, 0-5, 5-10 years.
Results: In the overall 10 years period, the proportional hazards assumption was violated for several biomarker groups indicating time-dependent effects. In tamoxifen-treated patients Low-MKS/Low-ERS cancers had continuously increasing risk of relapse that was higher after 5 years than Low-MKS/High-ERS cancers [0 to 10 year, HR 3.36; p = 0.013]. High-MKS/High-ERS cancers had low risk of early relapse [0-2.5 years HR 0.13; p = 0.0006], but high risk of late relapse which was higher than in the High-MKS/Low-ERS group [after 5 years HR 3.86; p = 0.007]. The High-MKS/Low-ERS subset had most of the early relapses [0 to 2.5 years, HR 6.53; p < 0.0001] especially in node negative tumors and showed minimal response to neoadjuvant letrozole. These findings were qualitatively confirmed in a smaller independent cohort of tamoxifen-treated patients. Using different biomarkers provided similar results.
Conclusions: Early relapses are highest in highly proliferative/low-ERS cancers, in particular in node negative tumors. Relapses occurring after 5 years of adjuvant tamoxifen are highest among the highly-proliferative/high-ERS tumors although their risk of recurrence is modest in the first 5 years on tamoxifen. These tumors could be the best candidates for extended endocrine therapy
C. elegans model for studying tropomyosin and troponin regulations of muscle contraction and animal behavior
- …
