26 research outputs found

    Dynamic stability of a nonlinear multiple-nanobeam system

    Get PDF
    We use the incremental harmonic balance (IHB) method to analyse the dynamic stability problem of a nonlinear multiple-nanobeam system (MNBS) within the framework of Eringenā€™s nonlocal elasticity theory. The nonlinear dynamic system under consideration includes MNBS embedded in a viscoelastic medium as clamped chain system, where every nanobeam in the system is subjected to time-dependent axial loads. By assuming the von Karman type of geometric nonlinearity, a system of m nonlinear partial differential equations of motion is derived based on the Eulerā€“Bernoulli beam theory and Dā€™ Alembertā€™s principle. All nanobeams in MNBS are considered with simply supported boundary conditions. Semi-analytical solutions for time response functions of the nonlinear MNBS are obtained by using the single-mode Galerkin discretization and IHB method, which are then validated by using the numerical integration method. Moreover, Floquet theory is employed to determine the stability of obtained periodic solutions for different configurations of the nonlinear MNBS. Using the IHB method, we obtain an incremental relationship with the frequency and amplitude of time-varying axial load, which defines stability boundaries. Numerical examples show the effects of different physical and material parameters such as the nonlocal parameter, stiffness of viscoelastic medium and number of nanobeams on Floquet multipliers, instability regions and nonlinear amplitudeā€“frequency response curves of MNBS. The presented results can be useful as a first step in the study and design of complex micro/nanoelectromechanical systems

    Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations

    No full text
    The aim of the present work is to analyze free flexural vibration and buckling of single-walled carbon nanotubes (SWCNT) under compressive axial loading based on different constitutive equations and beam theories. The models contain a material length scale parameter that can capture the size effect, unlike the classical Euler-Bernoulli or Reddy beam theory. The equations of motion of the Reddy and the Huu-Tai beam theories are reformulated using different gradient elasticity theories, including stress, strain and combined strain/inertia. The equations of motion are derived from Hamiltonā€™s principle in terms of the generalized displacements. Analytical solutions of free vibration and buckling are presented to bring out the effect of the nonlocal behavior on natural frequencies and buckling loads. The presented theoretical analysis is illustrated by a numerical example, and the results are qualitatively compared by another results

    Use of overburden waste for London plane (Platanus Ɨ acerifolia) growth: the role of plant growth promoting microbial consortia

    No full text
    Overburden waste dumps represent a huge threat to environmental quality. The reduction of their negative impact can be achieved by vegetation cover establishment. Usually, this action is complicated due to site-specific characteristics, such as nutrient deficiency, elevated metal concentration, low pH value, lack of moisture and lack of organic matter. Establishment of vegetation can be facilitated by inoculation with plant growth promoting bacteria (PGPB) which improve the physicochemical and biological properties of degraded substrates and make them more hospitable for plants. In this study we selected several strains based on the ability to produce ammonia, indole-3-acetic acid, siderophores and lytic enzymes, and to solubilize inorganic phosphates. This selection resulted in microbial consortia consisting of Serratia liquefaciens Z-I ARV, Ensifer adhaerens 10_ARV, Bacillus amyloliquefaciens D5 ARV and Pseudomonas putida P1 ARV. The effects of PGPB consortia on one-year-old London plane (Platanus x acerifolia [Aiton] Willd.) seedlings replanted into overburden waste from Kolubara Mine Basin were examined. After seven months, inoculated seedlings were 32% higher with 45% wider root collar diameter and over 80% higher total dry biomass compared to uninoculated seedlings grown in Kolubara's overburden. Inoculation resulted in higher amounts of total soluble proteins, higher chlorophyll and epidermal flavonoids content and higher total antioxidative capacity in the leaves. This study represents a successful search for effective PGPB strains and shows that microbial consortia have an important role in enhancing the growth of seedlings in nutrient deficient and degraded substrates such as overburden waste from open-pit coal mines. Positive response of London plane seedlings suggest that inoculation may help widening the opus of species for reforestation of post mining areas and speed up natural succession processes and recovery of degraded landscapes

    Use of overburden waste for London plane (Platanus Ɨ acerifolia) growth: the role of plant growth promoting microbial consortia

    No full text
    Overburden waste dumps represent a huge threat to environmental quality. The reduction of their negative impact can be achieved by vegetation cover establishment. Usually, this action is complicated due to site-specific characteristics, such as nutrient deficiency, elevated metal concentration, low pH value, lack of moisture and lack of organic matter. Establishment of vegetation can be facilitated by inoculation with plant growth promoting bacteria (PGPB) which improve the physicochemical and biological properties of degraded substrates and make them more hospitable for plants. In this study we selected several strains based on the ability to produce ammonia, indole-3-acetic acid, siderophores and lytic enzymes, and to solubilize inorganic phosphates. This selection resulted in microbial consortia consisting of Serratia liquefaciens Z-I ARV, Ensifer adhaerens 10_ ARV, Bacillus amyloliquefaciens D5 ARV and Pseudomonas putida P1 ARV. The effects of PGPB consortia on one-year-old London plane (Platanus Ɨ acerifolia [Aiton] Willd.) seedlings replanted into overburden waste from Kolubara Mine Basin were examined. After seven months, inoculated seedlings were 32% higher with 45% wider root collar diameter and over 80% higher total dry biomass compared to uninoculated seedlings grown in Kolubaraā€™s overburden. Inoculation resulted in higher amounts of total soluble proteins, higher chlorophyll and epidermal flavonoids content and higher total antioxidative capacity in the leaves. This study represents a successful search for effective PGPB strains and shows that microbial consortia have an important role in enhancing the growth of seedlings in nutrient deficient and degraded substrates such as overburden waste from open-pit coal mines. Positive response of London plane seedlings suggest that inoculation may help widening the opus of species for reforestation of post mining areas and speed up natural succession processes and recovery of degraded landscapes

    Soil yeasts promoting plant growth: Benefits for the development of common wheat and white mustard

    No full text
    A large number of soil microorganisms are characterized as plant growth promoting, but there seems to be a lack of comprehensive knowledge regarding plant growth promoting soil yeasts. The aim of the experiment was to analyse the properties of three yeast species: Schwanniomyces occidentalis BK0302D, Cyberlindnera saturnus CK2404I and Candida tropicalis 2TD2912B, important for plant growth (ammonium sulphate transformation, phosphorus, potassium and zinc dissolution), and to evaluate the effect of yeast on the growth of common wheat and white mustard seedlings after seedsā€™ inoculation. Common wheat and white mustard seeds were inoculated with the selected yeasts. The final measurements showed that the highest amount of nitrate (10.40 Ī¼g mL-1 NO3 āˆ’) was produced by C. saturnus CK2404I, while S. occidentalis BK0302D solubilized the largest amount of phosphorus (63.70 Ī¼g mL-1 P). All three strains are marked as potassium and zinc solubilizers with both acid and alkaline phosphatase activity. This is the first report on S. occidentalis and C. tropicalis ability to solubilize insoluble potassium and zinc, and C. saturnus ability to solubilize insoluble phosphorus, potassium and zinc. Also, C. tropicalis 2TD2912B exhibited high antagonistic activity (66% growth inhibition) toward Botrytis cinerea. In vivo trial was conducted in a low-nutrient substrate, and S. occidentalis BK0302D was found to have the most considerable influence on common wheat biomass production (34% increase). White mustard inoculation with C. saturnus CK2404I resulted in a 4-fold higher biomass production, while S. occidentalis BK0302D induced a 2-fold increase. The presented results confirmed the multi-functional plant growth promoting characteristics of the tested yeasts and their potential for broad application from conventional agriculture on low-nutrient soils to revegetation of disturbed substrates. Ā© 2022, Lithuanian Research Centre for Agriculture and Forestry; Vytautas Magnus University. All rights reserved

    Isolation and characterization of bacteria and yeasts from contaminated soil

    No full text
    Plant growth promoting (PGP) bacteria and yeasts play an important role in bioremediation processes. Thirty bacterial and ten yeast isolates were obtained from PAH and PCB contaminated soil with an aim of determining the presence of PGP mechanisms (production of ammonia, indoleacetic acid, siderophores and solubilization of inorganic phosphate). As a result, three bacterial (Serratia liquefaciens, Micrococcus sp. and Serratia sp.) and two yeast isolates (Candida utilis and Candida tropicalis) were recognized as PGP strains. Among them, Serratia sp. showed the highest indole production (25.5 Ī¼g/ml). Analyses of metal tolerance (Cu+2, Cr+6 and Ni+2) revealed that Serratia liquefaciens, Micrococcus sp., Serratia sp. and Candida tropicalis were capable to tolerate significant concentration of metals. As a result of this study several bacterial and yeast strains were attributed as potential plant growth promoters which can be applied in future remediation activities and environmental quality improvements. [Projekat ministarstva nauke Republike Srbije, br. TR 31080 i FP-7 project AREA (316004)
    corecore