2,009 research outputs found
Compositional Set Invariance in Network Systems with Assume-Guarantee Contracts
This paper presents an assume-guarantee reasoning approach to the computation
of robust invariant sets for network systems. Parameterized signal temporal
logic (pSTL) is used to formally describe the behaviors of the subsystems,
which we use as the template for the contract. We show that set invariance can
be proved with a valid assume-guarantee contract by reasoning about individual
subsystems. If a valid assume-guarantee contract with monotonic pSTL template
is known, it can be further refined by value iteration. When such a contract is
not known, an epigraph method is proposed to solve for a contract that is
valid, ---an approach that has linear complexity for a sparse network. A
microgrid example is used to demonstrate the proposed method. The simulation
result shows that together with control barrier functions, the states of all
the subsystems can be bounded inside the individual robust invariant sets.Comment: Submitted to 2019 American Control Conferenc
Compositional Set Invariance in Network Systems with Assume-Guarantee Contracts
This paper presents an assume-guarantee reasoning approach to the computation of robust invariant sets for network systems. Parameterized signal temporal logic (pSTL) is used to formally describe the behaviors of the subsystems, which we use as the template for the contract. We show that set invariance can be proved with a valid assume-guarantee contract by reasoning about individual subsystems. If a valid assume-guarantee contract with monotonic pSTL template is known, it can be further refined by value iteration. When such a contract is not known, an epigraph method is proposed to solve for a contract that is valid, -an approach that has linear complexity for a sparse network. A microgrid example is used to demonstrate the proposed method. The simulation result shows that together with control barrier functions, the states of all the subsystems can be bounded inside the individual robust invariant sets
The presence of undesirable mould species on the surface of dry sausages
Transition from manufacture to the industrial way of meat production and processing, as well as contemporary concept of food quality and safety, have led to the application of starter cultures. Their application leads towards the streamlining of the production process in the desired direction, quality improvement and its harmonization, and thereby to its standardization. Application of moulds in the meat industry is based on positive effects of their proteolytic and lipolytic egzoenzymes which, as a consequence, leads to the creation of characteristic sensory properties ('flavor') of fermented products. Penicillium nalgiovense is a typical representative of moulds used in the production of fermented sausages-salamis from our region. Samples of 'zimska salama' (dry sausage), produced with Penicillium nalgiovense, were evaluated as hygienically unacceptable. Their sensory properties changed due to contamination of this mould during the ripening process. Micological analysis discovered the presence of Penicillium aurantiogriseum, which is a frequent mould contaminant in the meat industry. At the same time, thin layer chromatography revealed no possibility of metabolic activity of this mould in the creation of mycotoxins. However, the presence of this mould on the surface of 'zimska salama' is considered as undesirable due to formation of 'off flavor' in products. Such product is considered as hygienically unacceptable and cannot be used for the human consumption
Investigating Liquid-Liquid Phase Separation in Lipid Bilayers: A Multi-Modal Approach Utilizing Spectroscopy, Microscopy, and Cryo-EM
This thesis explores the characterization of liquid-liquid phase separation in model lipid bilayers using fluorescence, optical microscopy, and cryo-electron microscopy (cryo-EM) integrated with machine learning (ML) analysis. The plasma membrane has a complex composition, lateral heterogeneity and dynamic structure which makes it challenging to study. Simplified model membranes containing three or four-component lipid mixtures, typically comprising low- and high-melting lipids along with cholesterol, form phase separated systems that mimic lateral heterogeneity/lipid rafts in biomembranes. In living cells, lipid rafts are thought to form nanoscopic domains smaller than 200 nm. These domains cannot be resolved by conventional optical microscopy. For a long time, these nanoscopic domains have been characterized using indirect techniques. Seeing is believing and cryo-EM is employed as the primary tool for visualizing these nanoscopic domains, leveraging its ability to analyze samples particle-by-particle. Chapter 3 introduces a novel application of ML for characterizing phase-separated vesicles in cryo-EM images. It presents a simulation-based study testing various supervised and unsupervised ML methods for classifying the phase state of liposomes. Chapter 4 transitions to an experimental study, applying the supervised ML pipeline developed in Chapter 3 to estimate phase fraction, domain size and domain number in a three-component mixture. Substantial heterogeneity is observed in experimental samples that was not present in simulated liposomes. Together, these studies successfully demonstrate cryo-EM\u27s potential for studying nanoscopic domains in model membranes on vesicle-by-vesicle basis. Chapter 5 investigates the role of the membrane dipole potential in lipid phase separation, providing insights into the mechanisms driving domain formation in lipid bilayers. This comprehensive study also highlights the synergy between advanced microscopy, ML, and theoretical modeling in elucidating the complexities vi of lipid phase behavior. These studies underscore the importance of lipid composition in biological membranes as a mechanism for controlling lipid raft formation and function
Cardiac Potassium Channels: Physiological Insights for Targeted Therapy.
The development of novel drugs specifically directed at the ion channels underlying particular features of cardiac action potential (AP) initiation, recovery, and refractoriness would contribute to an optimized approach to antiarrhythmic therapy that minimizes potential cardiac and extracardiac toxicity. Of these, K(+) channels contribute numerous and diverse currents with specific actions on different phases in the time course of AP repolarization. These features and their site-specific distribution make particular K(+) channel types attractive therapeutic targets for the development of pharmacological agents attempting antiarrhythmic therapy in conditions such as atrial fibrillation. However, progress in the development of such temporally and spatially selective antiarrhythmic drugs against particular ion channels has been relatively limited, particularly in view of our incomplete understanding of the complex physiological roles and interactions of the various ionic currents. This review summarizes the physiological properties of the main cardiac potassium channels and the way in which they modulate cardiac electrical activity and then critiques a number of available potential antiarrhythmic drugs directed at them
- …
