1,340 research outputs found
Collective Spin Fluctuation Mode and Raman Scattering in Superconducting Cuprates
Although the low frequency electronic Raman response in the superconducting
state of the cuprates can be largely understood in terms of a d-wave energy
gap, a long standing problem has been an explanation for the spectra observed
in the polarization orientations. We present calculations which
suggest that the peak position of the observed spectra is due to a
collective spin fluctuation mode.Comment: 4 pages, 5 eps figure
Exact Bond Ordered Ground State for the Transition Between the Band and the Mott Insulator
We derive an effective Hamiltonian for an ionic Hubbard chain,
valid for , where is the hopping, the Coulomb
repulsion, and the charge transfer energy. is the minimal
model for describing the transition from the band insulator (BI) () and the Mott insulator (MI) (). Using spin-particle
transformations (Phys. Rev. Lett. \textbf{86}, 1082 (2001)), we map
into an SU(3) antiferromagnetic Heisenberg model whose
exact ground state is known. In this way, we show rigorously that a
spontaneously dimerized insulating ferroelectric phase appears in the
transition region between the BI and MI
Shadow features and shadow bands in the paramagnetic state of cuprate superconductors
The conditions for the precursors of antiferromagnetic bands in cuprate
superconductors are studied using weak-to-intermediate coupling approach. It is
shown that there are, in fact, three different precursor effects due to the
proximity to antiferromagnetic instability: i) the shadow band which associated
with new pole in the Green's function ii) the dispersive shadow feature due to
the thermal enhancement of the scattering rate and iii) the non-dispersive
shadow feature due to quantum spin fluctuation that exist only in
scan of the spectral function . I found
that dispersive shadow peaks in can exist at finite
temperature T in the renormalized classical regime, when ,
( is the characteristic energy of
spin fluctuations, is the thermal wave length of electron). In
contrast at zero temperature, only non-dispersive shadow feature in has been found. I found, however, that the latter
effect is always very small. The theory predict no shadow effects in the
optimally doped materials. The conditions for which shadow peaks can be
observed in photoemission are discussed.Comment: 6 pages, REVTEX, 2 ps figures, version to be published in PR
A Consistent Picture of Electronic Raman Scattering and Infrared Conductivity in the Cuprates
Calculations are presented for electronic Raman scattering and infrared
conductivity in a superconductor including the effects of
elastic scattering via anisotropic impurities and inelastic spin-fluctuation
scattering. A consistent description of experiments on optimally doped Bi-2212
is made possible by considering the effects of correlations on both inelastic
and elastic scattering.Comment: 4 pages Revtex, 5 embedded eps file
Disorder Induced Stripes in d-Wave Superconductors
Stripe phases are observed experimentally in several copper-based high-Tc
superconductors near 1/8 hole doping. However, the specific characteristics may
vary depending on the degree of dopant disorder and the presence or absence of
a low- temperature tetragonal phase. On the basis of a Hartree-Fock decoupling
scheme for the t-J model we discuss the diverse behavior of stripe phases. In
particular the effect of inhomogeneities is investigated in two distinctly
different parameter regimes which are characterized by the strength of the
interaction. We observe that small concen- trations of impurities or vortices
pin the unidirectional density waves, and dopant disorder is capable to
stabilize a stripe phase in parameter regimes where homogeneous phases are
typically favored in clean systems. The momentum-space results exhibit
universal features for all coexisting density-wave solutions, nearly unchanged
even in strongly disordered systems. These coexisting solutions feature
generically a full energy gap and a particle-hole asymmetry in the density of
states.Comment: 28 pages, 8 figure
ARPES Spectra of the Hubbard model
We discuss spectra calculated for the 2D Hubbard model in the intermediate
coupling regime with the dynamical cluster approximation, which is a
non-perturbative approach. We find a crossover from a normal Fermi liquid with
a Fermi surface closed around the Brillouin zone center at large doping to a
non-Fermi liquid for small doping. The crossover is signalled by a splitting of
the Fermi surface around the point of the 2D Brillouin zone, which
eventually leads to a hole-like Fermi surface closed around the point M. The
topology of the Fermi surface at low doping indicates a violation of
Luttinger's theorem. We discuss different ways of presenting the spectral data
to extract information about the Fermi surface. A comparison to recent
experiments will be presented.Comment: 8 pages, 7 color figures, uses RevTeX
Ginzburg-Landau Expansion in a Toy Model of Superconductor with Pseudogap
We propose a toy model of electronic spectrum of two-dimensional system with
``hot-patches'' on the Fermi surface, which leads to essential renormalization
of spectral density (pseudogap). Within this model we derive Ginzburg-Landau
expansion for both s-wave and d-wave Cooper pairing and analyze the influence
of pseudogap formation on the basic properties of superconductors.Comment: 14 pages, 14 figures, RevTeX 3.0, Postscript figures attached, some
changes in the explanation of the model, published in JETP 115, No.2, (1999
Ground-state van der Waals forces in planar multilayer magnetodielectrics
Within the frame of lowest-order perturbation theory, the van der Waals
potential of a ground-state atom placed within an arbitrary dispersing and
absorbing magnetodielectric multilayer system is given. Examples of an atom
situated in front of a magnetodielectric plate or between two such plates are
studied in detail. Special emphasis is placed on the competing attractive and
repulsive force components associated with the electric and magnetic matter
properties, respectively, and conditions for the formation of repulsive
potential walls are given. Both numerical and analytical results are presented.Comment: 16 pages, 8 figures, minor correction
Dynamical Properties of Two Coupled Hubbard Chains at Half-filling
Using grand canonical Quantum Monte Carlo (QMC) simulations combined with
Maximum Entropy analytic continuation, as well as analytical methods, we
examine the one- and two-particle dynamical properties of the Hubbard model on
two coupled chains at half-filling. The one-particle spectral weight function,
, undergoes a qualitative change with interchain hopping
associated with a transition from a four-band insulator to a two-band
insulator. A simple analytical model based on the propagation of exact rung
singlet states gives a good description of the features at large . For
smaller , is similar to that of the
one-dimensional model, with a coherent band of width the effective
antiferromagnetic exchange reasonably well-described by renormalized
spin-wave theory. The coherent band rides on a broad background of width
several times the parallel hopping integral , an incoherent structure
similar to that found in calculations on both the one- and two-dimensional
models. We also present QMC results for the two-particle spin and charge
excitation spectra, and relate their behavior to the rung singlet picture for
large and to the results of spin-wave theory for small .Comment: 9 pages + 10 postscript figures, submitted to Phys.Rev.B, revised
version with isotropic t_perp=t data include
- …
