22 research outputs found

    Transient Increase in Cyclic AMP Localized to Macrophage Phagosomes

    Get PDF
    Cyclic AMP (cAMP) regulates many biological processes and cellular functions. The importance of spatially localized intracellular gradients of cAMP is increasingly appreciated. Previous work in macrophages has shown that cAMP is produced during phagocytosis and that elevated cAMP levels suppress host defense functions, including generation of proinflammatory mediators, phagocytosis and killing. However, the spatial and kinetic characteristics of cAMP generation in phagocytosing macrophages have yet to be examined. Using a FΓΆrster resonance energy transfer (FRET)-based cAMP biosensor, we measured the generation of cAMP in live macrophages. We detected no difference in bulk intracellular cAMP levels between resting cells and cells actively phagocytosing IgG-opsonized particles. However, analysis with the biosensor revealed a rapid decrease in FRET signal corresponding to a transient burst of cAMP production localized to the forming phagosome. cAMP levels returned to baseline after the particle was internalized. These studies indicate that localized increases in cAMP accompany phagosome formation and provide a framework for a more complete understanding of how cAMP regulates macrophage host defense functions

    The novel estrogen-induced gene EIG121 regulates autophagy and promotes cell survival under stress

    Get PDF
    We previously identified a novel estrogen-induced gene, EIG121, as being differentially regulated in endometrioid and nonendometrioid endometrial carcinoma. The function of EIG121 was unknown. Using a tetracycline-inducible system, we found that overexpression of EIG121, but not of LacZ, caused a profound suppression of cell growth. Subcellular fractionation and immunofluroscent labeling indicated that EIG121 was a transmembrane protein localized in the plasma membrane-late endosome–lysosome compartments. Deletion of the putative transmembrane domain abolished the membrane association. In cells overexpressing EIG121, cytoplasmic vacuoles accumulated after EIG121 induction, and the autophagosome marker LC3 translocated into punctuate, dot-like structures. Electron microscopy revealed that in cells overexpressing EIG121, autophagosomes were markedly increased. Overexpression of EIG121 also increased the cells containing acidic vesicles and induced lysosomal degradation of long-lived proteins. In MCF-7 cells, both EIG121 and LC3 were rapidly degraded by a lysosomal mechanism after starvation. Knockdown of EIG121 blocked starvation-induced LC3 degradation. By itself, knockdown of EIG121 did not affect cell survival. When combined with starvation or cytotoxic agents, EIG121 knockdown greatly increased apoptosis. Our results suggest that EIG121 is associated with the endosome–lysosome compartments and may have an important role in autophagy. Under unfavorable conditions such as starvation and exposure to cytotoxic agents, EIG121 may protect cells from cell death by upregulating the autophagy pathway

    Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs

    Get PDF
    Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-Ξ±) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment

    Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy

    Get PDF
    corecore