3,248 research outputs found
Starburst-driven galactic winds: I. Energetics and intrinsic X-ray emission
We have performed an extensive hydrodynamical parameter study of
starburst-driven galactic winds, motivated by the latest observation data on
the best-studied starburst galaxy M82. We study how the wind dynamics,
morphology and X-ray emission depend on the host galaxy's ISM distribution,
starburst star formation history and strength, and presence and distribution of
mass-loading by dense clouds. We find that the soft X-ray emission from
galactic winds comes from low filling factor (ff < 2 per cent) gas, which
contains only a small fraction (f < 10 per cent) of the mass and energy of the
wind, irrespective of whether the wind models are strongly mass-loaded or not.
X-ray observations of galactic winds therefore do not directly probe the gas
that contains the majority of the energy, mass or metal-enriched gas in the
outflow. The soft X-ray emission comes from gas at a wide range different
temperatures and densities. Estimates of the physical properties of the hot gas
in starburst galaxies, based on fitting the standard simple spectral models to
existing X-ray spectra, should therefore be treated with extreme suspicion. The
majority of the thermal and kinetic energy of these winds is in a volume
filling hot, T approx 10^7 K, component which is extremely difficult to probe
observationally due to its low density and hence low emissivity. Most of the
total energy is in the kinetic energy of this hot gas, a factor which must be
taken into account when attempting to constrain wind energetics
observationally. We also find that galactic winds are efficient at transporting
large amounts of energy out of the host galaxy, in contrast to their
inefficiency at transporting mass out of star-forming galaxies. (Abridged)Comment: Accepted for publication in MNRAS. Letter page size postscript
available from http://adcam.pha.jhu.edu/~dks/dks_published.htm
On the Physical Origin of OVI Absorption-Line Systems
We present a unified analysis of the O{\sc vi} absorption-lines seen in the
disk and halo of the Milky Way, high velocity clouds, the Magellanic Clouds,
starburst galaxies, and the intergalactic medium. We show that these disparate
systems define a simple relationship between the O{\sc vi} column density and
absorption-line width that is independent of the Oxygen abundance over the
range O/H 10% to twice solar. We show that this relation is exactly that
predicted theoretically as a radiatively cooling flow of hot gas passes through
the coronal temperature regime - independent of its density or metallicity (for
O/H 0.1 solar). Since most of the intregalactic O{\sc vi} clouds obey
this relation, we infer that they can not have metallicities less than a few
percent solar. In order to be able to cool radiatively in less than a Hubble
time, the intergalactic clouds must be smaller than 1 Mpc in size. We
show that the cooling column densities for the O{\sc iv}, O{\sc v}, Ne{\sc v},
and Ne{\sc vi} ions are comparable to those seen in O{\sc vi}. This is also
true for the Li-like ions Ne{\sc viii}, Mg{\sc x}, and Si{\sc xii} (if the gas
is cooling from K). All these ions have strong resonance lines
in the extreme-ultraviolet spectral range, and would be accessible to at
0.2 to 0.8. We also show that the Li-like ions can be used to probe
radiatively cooling gas at temperatures an order-of-magnitude higher than where
their ionic fraction peaks. We calculate that the H-like (He-like) O, Ne, Mg,
Si, and S ions have cooling columns of cm. The O{\sc vii},
O{\sc viii}, and Ne{\sc ix} X-ray absorption-lines towards PKS 2155-304 may
arise in radiatively cooling gas in the Galactic disk or halo.Comment: 25 pages, 5 figure
FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705
We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy
NGC 1705. These data allow us for the first time to probe the coronal-phase gas
(T = 10E5 to 10E6 K) that may dominate the radiative cooling of the
supernova-heated ISM and thereby determine the dynamical evolution of
starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80
km/s) OVI absorption-line arising in the previously-known galactic outflow. The
properties of the OVI absorption are inconsistent with the standard superbubble
model in which this gas arises in a conductive interface inside the outer
shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy
ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing
as hot gas rushes out through fissures in the fragmenting shell of cool gas. As
the coronal gas cools radiatively, it can naturally produce the observed OVI
column density and outflow speed. The OVI data show that the cooling rate in
the coronal-phase gas is less than about 10% of the supernova heating rate.
Since the X-ray luminosity from hotter gas is even smaller, we conclude that
radiative losses are insignificant. The outflow should be able to vent its
metals and kinetic energy out of the galaxy. This process has potentially
important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press
The quest for hot gas in the halo of NGC 1511
XMM-Newton observations of the starburst galaxy NGC 1511 reveal the presence
of a previously unknown extended hot gaseous phase of its ISM, which partly
extends out of the disk plane. The emission distribution is asymmetric, being
brightest in the eastern half of the galaxy, where also radio continuum
observations suggest the highest level of star formation. Spectral analysis of
the integral 0.2-12 keV X-ray emission from NGC 1511 indicates a complex
emission composition. A model comprising a power law plus thermal plasma
component, both absorbed by foreground gas, cannot explain all details of the
observed spectrum, requiring a third spectral component to be added. This
component can be a second thermal plasma, but other spectral models can be
fitted as well. Its X-ray properties characterize NGC 1511 as a starburst
galaxy. The X-ray-to-infrared luminosity ratio is consistent with this result.
Together with the X-ray data, XMM-Newton obtained UV images of NGC 1511,
tracing massive stars heating the ambient gas, which is then seen in H\alpha
emission. UV, H\alpha and near-infrared imagery suggest that NGC 1511 is
disturbed, most likely by its two small companions, NGC 1511a and NGC 1511b.Comment: 7 pages, 7 figures, accepted for publication in A&
Migration Patterns of Double-crested Cormorants Wintering in the Southeastern United States
Migration patterns of Double-crested Cormorants (Phalacrocorax auritus) wintering in the southeastern U.S. are poorly understood. Movement data were analyzed from 28 cormorants captured in Alabama, Arkansas, Louisiana and Mississippi and equipped with satellite transmitters. Four (three immature, one adult) cormorants did not migrate and stayed in the southeastern U.S. throughout the year. During spring, cormorants captured in Alabama migrated east of the Mississippi River and primarily west of the Appalachian Mountains. Cormorants from Arkansas, Louisiana and Mississippi migrated north along the Mississippi River Valley, the Missouri River Valley and/or the Ohio River Valley. The earliest departure for spring migration was 26 March, whereas the latest departure was 12 May. Adult cormorants departed for spring migration earlier than immature cormorants. The average departure date for fall migration was 1 October. Mean duration of spring migration was twelve days, and cormorants traveled an average of 70 km per day
- …