3,248 research outputs found

    Starburst-driven galactic winds: I. Energetics and intrinsic X-ray emission

    Full text link
    We have performed an extensive hydrodynamical parameter study of starburst-driven galactic winds, motivated by the latest observation data on the best-studied starburst galaxy M82. We study how the wind dynamics, morphology and X-ray emission depend on the host galaxy's ISM distribution, starburst star formation history and strength, and presence and distribution of mass-loading by dense clouds. We find that the soft X-ray emission from galactic winds comes from low filling factor (ff < 2 per cent) gas, which contains only a small fraction (f < 10 per cent) of the mass and energy of the wind, irrespective of whether the wind models are strongly mass-loaded or not. X-ray observations of galactic winds therefore do not directly probe the gas that contains the majority of the energy, mass or metal-enriched gas in the outflow. The soft X-ray emission comes from gas at a wide range different temperatures and densities. Estimates of the physical properties of the hot gas in starburst galaxies, based on fitting the standard simple spectral models to existing X-ray spectra, should therefore be treated with extreme suspicion. The majority of the thermal and kinetic energy of these winds is in a volume filling hot, T approx 10^7 K, component which is extremely difficult to probe observationally due to its low density and hence low emissivity. Most of the total energy is in the kinetic energy of this hot gas, a factor which must be taken into account when attempting to constrain wind energetics observationally. We also find that galactic winds are efficient at transporting large amounts of energy out of the host galaxy, in contrast to their inefficiency at transporting mass out of star-forming galaxies. (Abridged)Comment: Accepted for publication in MNRAS. Letter page size postscript available from http://adcam.pha.jhu.edu/~dks/dks_published.htm

    On the Physical Origin of OVI Absorption-Line Systems

    Full text link
    We present a unified analysis of the O{\sc vi} absorption-lines seen in the disk and halo of the Milky Way, high velocity clouds, the Magellanic Clouds, starburst galaxies, and the intergalactic medium. We show that these disparate systems define a simple relationship between the O{\sc vi} column density and absorption-line width that is independent of the Oxygen abundance over the range O/H ∼\sim 10% to twice solar. We show that this relation is exactly that predicted theoretically as a radiatively cooling flow of hot gas passes through the coronal temperature regime - independent of its density or metallicity (for O/H ≳\gtrsim 0.1 solar). Since most of the intregalactic O{\sc vi} clouds obey this relation, we infer that they can not have metallicities less than a few percent solar. In order to be able to cool radiatively in less than a Hubble time, the intergalactic clouds must be smaller than ∼\sim1 Mpc in size. We show that the cooling column densities for the O{\sc iv}, O{\sc v}, Ne{\sc v}, and Ne{\sc vi} ions are comparable to those seen in O{\sc vi}. This is also true for the Li-like ions Ne{\sc viii}, Mg{\sc x}, and Si{\sc xii} (if the gas is cooling from T≳106T \gtrsim 10^6 K). All these ions have strong resonance lines in the extreme-ultraviolet spectral range, and would be accessible to FUSEFUSE at z≳z \gtrsim 0.2 to 0.8. We also show that the Li-like ions can be used to probe radiatively cooling gas at temperatures an order-of-magnitude higher than where their ionic fraction peaks. We calculate that the H-like (He-like) O, Ne, Mg, Si, and S ions have cooling columns of ∼1017\sim10^{17} cm−2^{-2}. The O{\sc vii}, O{\sc viii}, and Ne{\sc ix} X-ray absorption-lines towards PKS 2155-304 may arise in radiatively cooling gas in the Galactic disk or halo.Comment: 25 pages, 5 figure

    FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705

    Get PDF
    We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy NGC 1705. These data allow us for the first time to probe the coronal-phase gas (T = 10E5 to 10E6 K) that may dominate the radiative cooling of the supernova-heated ISM and thereby determine the dynamical evolution of starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80 km/s) OVI absorption-line arising in the previously-known galactic outflow. The properties of the OVI absorption are inconsistent with the standard superbubble model in which this gas arises in a conductive interface inside the outer shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing as hot gas rushes out through fissures in the fragmenting shell of cool gas. As the coronal gas cools radiatively, it can naturally produce the observed OVI column density and outflow speed. The OVI data show that the cooling rate in the coronal-phase gas is less than about 10% of the supernova heating rate. Since the X-ray luminosity from hotter gas is even smaller, we conclude that radiative losses are insignificant. The outflow should be able to vent its metals and kinetic energy out of the galaxy. This process has potentially important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press

    The quest for hot gas in the halo of NGC 1511

    Full text link
    XMM-Newton observations of the starburst galaxy NGC 1511 reveal the presence of a previously unknown extended hot gaseous phase of its ISM, which partly extends out of the disk plane. The emission distribution is asymmetric, being brightest in the eastern half of the galaxy, where also radio continuum observations suggest the highest level of star formation. Spectral analysis of the integral 0.2-12 keV X-ray emission from NGC 1511 indicates a complex emission composition. A model comprising a power law plus thermal plasma component, both absorbed by foreground gas, cannot explain all details of the observed spectrum, requiring a third spectral component to be added. This component can be a second thermal plasma, but other spectral models can be fitted as well. Its X-ray properties characterize NGC 1511 as a starburst galaxy. The X-ray-to-infrared luminosity ratio is consistent with this result. Together with the X-ray data, XMM-Newton obtained UV images of NGC 1511, tracing massive stars heating the ambient gas, which is then seen in H\alpha emission. UV, H\alpha and near-infrared imagery suggest that NGC 1511 is disturbed, most likely by its two small companions, NGC 1511a and NGC 1511b.Comment: 7 pages, 7 figures, accepted for publication in A&

    Migration Patterns of Double-crested Cormorants Wintering in the Southeastern United States

    Get PDF
    Migration patterns of Double-crested Cormorants (Phalacrocorax auritus) wintering in the southeastern U.S. are poorly understood. Movement data were analyzed from 28 cormorants captured in Alabama, Arkansas, Louisiana and Mississippi and equipped with satellite transmitters. Four (three immature, one adult) cormorants did not migrate and stayed in the southeastern U.S. throughout the year. During spring, cormorants captured in Alabama migrated east of the Mississippi River and primarily west of the Appalachian Mountains. Cormorants from Arkansas, Louisiana and Mississippi migrated north along the Mississippi River Valley, the Missouri River Valley and/or the Ohio River Valley. The earliest departure for spring migration was 26 March, whereas the latest departure was 12 May. Adult cormorants departed for spring migration earlier than immature cormorants. The average departure date for fall migration was 1 October. Mean duration of spring migration was twelve days, and cormorants traveled an average of 70 km per day
    • …
    corecore