40,429 research outputs found

    Seventy-One New L and T Dwarfs from the Sloan Digital Sky Survey

    Full text link
    We present near-infrared observations of 71 newly discovered L and T dwarfs, selected from imaging data of the Sloan Digital Sky Survey (SDSS) using the i-dropout technique. Sixty-five of these dwarfs have been classified spectroscopically according to the near-infrared L dwarf classification scheme of Geballe et al. and the unified T dwarf classification scheme of Burgasser et al. The spectral types of these dwarfs range from L3 to T7, and include the latest types yet found in the SDSS. Six of the newly identified dwarfs are classified as early- to mid-L dwarfs according to their photometric near-infrared colors, and two others are classified photometrically as M dwarfs. We also present new near-infrared spectra for five previously published SDSS L and T dwarfs, and one L dwarf and one T dwarf discovered by Burgasser et al. from the Two Micron All Sky Survey. The new SDSS sample includes 27 T dwarfs and 30 dwarfs with spectral types spanning the complex L-T transition (L7-T3). We continue to see a large (~0.5 mag) spread in J-H for L3 to T1 types, and a similar spread in H-K for all dwarfs later than L3. This color dispersion is probably due to a range of grain sedimentation properties, metallicity, and gravity. We also find L and T dwarfs with unusual colors and spectral properties that may eventually help to disentangle these effects.Comment: accepted by AJ, 18 pages, 10 figures, 5 tables, emulateapj layou

    ROAM: a Radial-basis-function Optimization Approximation Method for diagnosing the three-dimensional coronal magnetic field

    Get PDF
    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 A˚\AA and 10798 A˚\AA lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analogue. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.Comment: 23 pages, 12 figures, accepted in Frontiers in Astronomy and Space Science

    Emission of nearly stripped carbon and oxygen from the sun

    Get PDF
    Energy spectra of nearly stripped carbon and oxygen nuclei were observed during several solar particle events indicating a systematic deviation of these spectra from a simple power law. The spectra bend below 100 keV per nucleon and the degree of turn-over are highly correlated with the size of the flare, as measured by the event averaged flux of 130 to 220 keV protons. The energy spectra of helium computed for the same time periods do not show a similar feature. A large variability of the alpha/CNO ratio from event to event (from 2 to about 20 at 40 keV per nucleon) is found, and, in all cases examined, the carbon and oxygen nuclei are nearly fully stripped. These results are interpreted as evidence for storage of energetic ions in hot (T sub e is approximatey 1.5 million K) coronal regions, followed by strong adiabatic deceleration

    A direct measurement of the charge states of energetic iron emitted by the sun

    Get PDF
    The charge states of energetic iron have been measured directly for the first time in a solar particle event. In the energy interval 0.01 to 0.25 MeV per nucleon, iron is not fully stripped but has a mean ionization state of 11.6. This value is remarkably similar to the mean ionization state of iron in the quiet solar wind and suggests that the charge states were "frozen-in" at a coronal temperature of approximately 1,500,000 K

    Probing annihilations and decays of low-mass galactic dark matter in IceCube DeepCore array: Track events

    Full text link
    The deployment of DeepCore array significantly lowers IceCube's energy threshold to about 10 GeV and enhances the sensitivity of detecting neutrinos from annihilations and decays of light dark matter. To match this experimental development, we calculate the track event rate in DeepCore array due to neutrino flux produced by annihilations and decays of galactic dark matter. We also calculate the background event rate due to atmospheric neutrino flux for evaluating the sensitivity of DeepCore array to galactic dark matter signatures. Unlike previous approaches, which set the energy threshold for track events at around 50 GeV (this choice avoids the necessity of including oscillation effect in the estimation of atmospheric background event rate), we have set the energy threshold at 10 GeV to take the full advantage of DeepCore array. We compare our calculated sensitivity with those obtained by setting the threshold energy at 50 GeV. We conclude that our proposed threshold energy significantly improves the sensitivity of DeepCore array to the dark matter signature for mχ<100m_{\chi}< 100 GeV in the annihilation scenario and mχ<300m_{\chi}<300 GeV in the decay scenario.Comment: 19 pages, 5 figures; match the published versio

    High Energy Neutrino Flashes from Far-Ultraviolet and X-ray Flares in Gamma-Ray Bursts

    Get PDF
    The recent observations of bright optical and x-ray flares by the Swift satellite suggest these are produced by the late activities of the central engine. We study the neutrino emission from far-ultraviolet and x-ray flares under the late internal shock model. We show that the efficiency of pion production in the highest energy is comparable to or higher than the unity, and the contribution from such neutrino flashes to a diffuse very high energy neutrino background can be larger than that of prompt bursts if the total baryonic energy input into flares is comparable to the radiated energy of prompt bursts. These signals may be detected by IceCube and are very important because they have possibilities to probe the nature of flares (the baryon loading, the photon field, the magnetic field and so on).Comment: 4 pages, 3 figures, version published in PR
    corecore