1,950 research outputs found

    Measurement of the Difference in R=σ_L/σ_T and of σ^A/σ^D in Deep-Inelastic e-D, e-Fe, and e-Au Scattering

    Get PDF
    We measured the differences in R=σ_L/σ_T and the cross-section ratio σA/σD in deep-inelastic electron scattering from D, Fe, and Au nuclei in the kinematic range 0.2≤x≤0.5 and 1≤Q^2≤5 (Gev/c)^2. Our results for R^A-R^D are consistent with zero for all x and Q^2, indicating that possible contributions to R from nuclear higher-twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The European Muon Collaboration effect is reconfirmed, and the low-x data from all recent experiments, at all Q^2, are now in agreement

    Measurement of kinematic and nuclear dependence of R = σ_L/σ_T in deep inelastic electron scattering

    Get PDF
    We report results on a precision measurement of the ratio R=σ_L/σ_T in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q^2≤10 (GeV/c)^2. Our results show, for the first time, a clear falloff of R with increasing Q^2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences R_A-R_D and the cross section ratio σ^A/σ^D between Fe and Au nuclei and the deuteron. Our results for R_A-R_D are consistent with zero for all x, Q^2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σ^A/σ^D from all recent experiments, at all x, Q^2 values, are now in agreement

    y scaling in electron-nucleus scattering

    Get PDF
    Data on inclusive electron scattering from A = 4, 12, 27, 56, 197 nuclei at large momentum transfer are presented and analyzed in terms of y scaling. We find that the data do scale for y 1), and we study the convergence of the scaling function with the momentum transfer Q^2 and A

    Longitudinal and Transverse Response Functions in ^(56)Fe(e,e') at Momentum Transfer near 1 GeV/c

    Get PDF
    Inclusive electron-scattering cross sections have been measured for ^(56)Fe in the quasielastic region at electron energies between 0.9 and 4.3 GeV, at scattering angles of 15° and 85°. Longitudinal and transverse response functions at a q of 1.14 GeV/c have been extracted using a Rosenbluth separation. The experimental Coulomb sum has been obtained with aid of an extrapolation. The longitudinal response function, after correction for Coulomb distortion, is lower than quasifree-scattering-model predictions at the quasielastic peak and on the high-ω side

    A high-precision polarimeter

    Full text link
    We have built a polarimeter in order to measure the electron beam polarization in hall C at JLAB. Using a superconducting solenoid to drive the pure-iron target foil into saturation, and a symmetrical setup to detect the Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.

    Epitaxial Co2Cr0.6Fe0.4Al thin films and magnetic tunneling junctions

    Full text link
    Epitaxial thin films of the theoretically predicted half metal Co2Cr0.6Fe0.4Al were deposited by dc magnetron sputtering on different substrates and buffer layers. The samples were characterized by x-ray and electron beam diffraction (RHEED) demonstrating the B2 order of the Heusler compound with only a small partition of disorder on the Co sites. Magnetic tunneling junctions with Co2Cr0.6Fe0.4Al electrode, AlOx barrier and Co counter electrode were prepared. From the Julliere model a spin polarisation of Co2Cr0.6Fe0.4Al of 54% at T=4K is deduced. The relation between the annealing temperature of the Heusler electrodes and the magnitude of the tunneling magnetoresistance effect was investigated and the results are discussed in the framework of morphology and surface order based of in situ STM and RHEED investigations.Comment: accepted by J. Phys. D: Appl. Phy

    Elastic behavior in Contact Dynamics of rigid particles

    Full text link
    The systematic errors due to the practical implementation of the Contact Dynamics method for simulation of dense granular media are examined. It is shown that, using the usual iterative solver to simulate a chain of rigid particles, effective elasticity and sound propagation with a finite velocity occur. The characteristics of these phenomena are investigated analytically and numerically in order to assess the limits of applicability of this simulation method and to compare it with soft particle molecular dynamics.Comment: submitted to PRE, 7 pages, 6 figure
    corecore