11,142 research outputs found

    Domain wall roughening in three dimensional magnets at the depinning transition

    Full text link
    The kinetic roughening of a driven interface between three dimensional spin-up and spin-down domains in a model with non-conserved scalar order parameter and quenched disorder is studied numerically within a discrete time dynamics at zero temperature. The exponents characterizing the morphology of the interface are obtained close to the depinning-transitionComment: 5 pages with 2 figures, Revte

    Hodge numbers for the cohomology of Calabi-Yau type local systems

    Full text link
    We use Higgs cohomology to determine the Hodge numbers of the first intersection cohomology group of a local system V arising from the third direct image of a family of Calabi-Yau 3-folds over a smooth, quasi-projective curve. We give applications to Rhode's families of Calabi-Yau 3-folds without MUM.Comment: Some signs corrected. This article draws heavily from arXiv:0911.027

    Detuning-dependent Properties and Dispersion-induced Instabilities of Temporal Dissipative Kerr Solitons in Optical Microresonators

    Full text link
    Temporal-dissipative Kerr solitons are self-localized light pulses sustained in driven nonlinear optical resonators. Their realization in microresonators has enabled compact sources of coherent optical frequency combs as well as the study of dissipative solitons. A key parameter of their dynamics is the effective-detuning of the pump laser to the thermally- and Kerr-shifted cavity resonance. Together with the free spectral range and dispersion, it governs the soliton-pulse duration, as predicted by an approximate analytical solution of the Lugiato-Lefever equation. Yet, a precise experimental verification of this relation was lacking so far. Here, by measuring and controlling the effective-detuning, we establish a new way of stabilizing solitons in microresonators and demonstrate that the measured relation linking soliton width and detuning deviates by less than 1 % from the approximate expression, validating its excellent predictive power. Furthermore, a detuning-dependent enhancement of specific comb lines is revealed, due to linear couplings between mode-families. They cause deviations from the predicted comb power evolution, and induce a detuning-dependent soliton recoil that modifies the pulse repetition-rate, explaining its unexpected dependence on laser-detuning. Finally, we observe that detuning-dependent mode-crossings can destabilize the soliton, leading to an unpredicted soliton breathing regime (oscillations of the pulse) that occurs in a normally-stable regime. Our results test the approximate analytical solutions with an unprecedented degree of accuracy and provide new insights into dissipative-soliton dynamics.Comment: Updated funding acknowledgement

    Coherent Diabatic Ion Transport and Separation in a Multi-Zone Trap Array

    Full text link
    We investigate the motional dynamics of single and multiple ions during transport between and separation into spatially distinct locations in a multi-zone linear Paul trap. A single 9Be+ ion in a 2 MHz harmonic well located in one zone was laser-cooled to near its ground state of motion and transported 370 micrometers by moving the well to another zone. This was accomplished in 8 microseconds, corresponding to 16 periods of oscillation. Starting from a state with n=0.1 quanta, during transport the ion was excited to a displaced coherent state with n=1.6 quanta but on completion was returned close to its motional ground state with n=0.2. Similar results were achieved for the transport of two ions. We also separated chains of up to 9 ions from one potential well to two distinct potential wells. With two ions this was accomplished in 55 microseconds, with final excitations of about 2 quanta for each ion. Fast coherent transport and separation can significantly reduce the time overhead in certain architectures for scalable quantum information processing with trapped ions.Comment: 5 pages, 5 figure

    Complete methods set for scalable ion trap quantum information processing

    Full text link
    Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum computing using qubits stored in the internal states of trapped atomic ions. We quantify the repeatability of a multi-qubit operation, observing no loss of performance despite qubit transport over macroscopic distances. Key to these results is the use of different pairs of beryllium ion hyperfine states for robust qubit storage, readout and gates, and simultaneous trapping of magnesium re-cooling ions along with the qubit ions.Comment: 9 pages, 4 figures. Accepted to Science, and thus subject to a press embarg

    String Gas Baryogenesis

    Full text link
    We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.Comment: arXiv admin note: substantial text overlap with 0808.0746 by different autho

    Ground-state energy and Wigner crystallization in thick 2D-electron systems

    Full text link
    The ground state energy of the 2-D Wigner crystal is determined as a function of the thickness of the electron layer and the crystal structure. The method of evaluating the exchange-correlation energy is tested using known results for the infinitely-thin 2D system. Two methods, one based on the local-density approximation(LDA), and another based on the constant-density approximation (CDA) are established by comparing with quantum Monte-Carlo (QMC) results. The LDA and CDA estimates for the Wigner transition of the perfect 2D fluid are at rs=38r_s=38 and 32 respectively, compared with rs=35±5r_s=35\pm5 from QMC. For thick-2D layers as found in Hetero-junction-insulated-gate field-effect transistors, the LDA and CDA predictions of the Wigner transition are at rs=20.5r_s=20.5 and 15.5 respectively. Impurity effects are not considered here.Comment: Last figure and Table are modified in the revised version. Conclusions regarding the Wigner transition in thick layers are modified in the revised version. Latex manuscript, four figure
    corecore