3,403 research outputs found
Facial Cosmetics Have Little Effect on Attractiveness Judgments Compared with Identity
The vast majority of women in modern societies use facial cosmetics, which modify facial cues to attractiveness. However, the size of this increase remains unclear - how much more attractive are individuals after an application of cosmetics? Here, we utilised a 'new statistics' approach, calculating the effect size of cosmetics on attractiveness using a within-subjects design, and compared this with the effect size due to identity - that is, the inherent differences in attractiveness between people. Women were photographed with and without cosmetics, and these images were rated for attractiveness by a second group of participants. The proportion of variance in attractiveness explained by identity was much greater than the variance within models due to cosmetics. This result was unchanged after statistically controlling for the perceived amount of cosmetics that each model used. Although cosmetics increase attractiveness, the effect is small, and the benefits of cosmetics may be inflated in everyday thinking. © 2015, Pion Limited. All rights reserved
Software for Data Acquisition AMC Module with PCI Express Interface
Free Electron Laser in Hamburg (FLASH) and XRay Free Electron Laser (XFEL) are linear accelerators that require a complex and accurate Low Level Radio Frequency (LLRF) control system. Currently working systems are based on aged Versa Module Eurocard (VME) architecture. One of the alternatives for the VME bus is the Advanced Telecommunications and Computing Architecture (ATCA) standard. The ATCA based LLRF controller mainly consists of a few ATCA carrier boards and several Advanced Mezzanine Cards (AMC). AMC modules are available in variety of functions such as: ADC, DAC, data storage, data links and even CPU cards. This paper focuses on the software that allows user to collect and plot the data from commercially available TAMC900 board
Correlated radial velocity and X-ray variations in HD 154791/4U 1700+24
We present evidence for approximately 400-d variations in the radial velocity
of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The
variations are correlated with the previously reported approximately 400 d
variations in the X-ray flux of 4U 1700+24, which supports the association of
these two objects, as well as the identification of this system as the second
known X-ray binary in which a neutron star accretes from the wind of a red
giant. The HD 154791 radial velocity variations can be fit with an eccentric
orbit with period 404 +/- 3 d, amplitude K=0.75 +/- 0.12 km/s and eccentricity
e=0.26 +/- 0.15. There are also indications of variations on longer time scales
>~ 2000 d. We have re-examined all available ASM data following an unusually
large X-ray outburst in 1997-98, and confirm that the 1-d averaged 2-10 keV
X-ray flux from 4U 1700+24 is modulated with a period of 400 +/- 20 d. The mean
profile of the persistent X-ray variations was approximately sinusoidal, with
an amplitude of 0.108 +/- 0.012 ASM count/s (corresponding to 31% rms). The
epoch of X-ray maximum was approximately 40 d after the time of periastron
according to the eccentric orbital fit. If the 400 d oscillations from HD
154791/4U 1700+24 are due to orbital motion, then the system parameters are
probably close to those of the only other neutron-star symbiotic-like binary,
GX 1+4. We discuss the similarities and differences between these two systems.Comment: 6 pages, 2 figures; accepted by Ap
Discovery of a Luminous Quasar in the Nearby Universe
In the course of the Pico dos Dias survey (PDS), we identified the stellar
like object PDS456 at coordinates alpha = 17h 28m 19.796s, delta = -14deg 15'
55.87'' (epoch 2000), with a relatively nearby (z = 0.184) and bright (B =
14.69) quasar. Its position at Galactic coordinates l_II = 10.4deg, b_II =
+11.2deg, near the bulge of the Galaxy, may explain why it was not detected
before. The optical spectrum of PDS456 is typical of a luminous quasar, showing
a broad (FWHM ~ 4000 km/s) H_\beta line, very intense FeII lines and a weak
[OIII]\lambda5007 line. PDS456 is associated to the infrared source IRAS
17254-1413 with a 60 \mum infrared luminosity L_{60} = 3.8 x 10^{45} erg/s. The
relatively flat slopes in the infrared (\alpha(25,60) = -0.33 and \alpha(12,25)
= -0.78) and a flat power index in the optical (F_{\nu} \propto \nu^{-0.72})
may indicate a low dust content. A good match between the position of PDS456
and the position of the X-ray source RXS J172819.3-141600 implies an X-ray
luminosity L_x = 2.8 x 10^{44} erg/s. The good correlation between the strength
of the emission lines in the optical and the X-ray luminosity, as well as the
steep optical to X-ray index estimated (\alpha_{ox} = -1.64) suggest that
PDS456 is radio quiet. A radio survey previously performed in this region
yields an upper limit for radio power at ~ 5 GHz of ~ 2.6 x 10^{30} erg/s/Hz.
We estimate the Galactic reddening in this line-of-sight to be A_B \simeq 2.0,
implying an absolute magnitude M_B = -26.7 (using H_0 = 75 km s^{-1} Mpc^{-1}
and q_0 = 0). In the optical, PDS456 is therefore 1.3 times more luminous than
3C 273 and the most luminous quasar in the nearby (z \leq 0.3) Universe.Comment: 12 pages, LaTeX (aasms4.sty) + 3 figures; accepted for publication in
the Astrophysical Journal Letter
Discovery of optical pulsations in V2116 Ophiuchi/GX 1+4
We report the detection of pulsations with s period in V2116 Oph,
the optical counterpart of the low-mass X-ray binary GX 1+4. The pulsations are
sinusoidal with modulation amplitude of up to 4% in blue light and were
observed in ten different observing sessions during 1996 April-August using a
CCD photometer at the 1.6-m and 0.6-m telescopes of Laborat\'orio Nacional de
Astrof\'{\i}sica, in Brazil. The pulsations were also observed with the
fast photometer. With only one exception the observed optical periods are
consistent with those observed by the BATSE instrument on board the Compton
Gamma Ray Observatory at the same epoch. There is a definite correlation
between the observability of pulsations and the optical brightness of the
system: V2116~Oph had magnitude in the range when the pulsed
signal was detected, and when no pulsations were present. The
discovery makes GX 1+4 only the third of accretion-powered X-ray
pulsars to be firmly detected as a pulsating source in the optical. The
presence of flickering and pulsations in V2116 Oph adds strong evidence for an
accretion disk scenario in this system. The absolute magnitude of the pulsed
component on 1996 May 27 is estimated to be . The implied
dimensions for the emitting region are 1.1 R_{\sun}, 3.2 R_{\sun}, and 7.0
R_{\sun}, for black-body spectral distributions with K, K, and K, respectively.Comment: 9 pages, 3 figures in PostScript, latex, accepted for publication on
the Astrophysical Journal Letter
Evolution of spectral function in a doped Mott insulator : surface vs. bulk contributions
We study the evolution of the spectral function with progressive hole doping
in a Mott insulator, with = 0.0 - 0.5. The spectral
features indicate a bulk-to-surface metal-insulator transition in this system.
Doping dependent changes in the bulk electronic structure are shown to be
incompatible with existing theoretical predictions. An empirical description
based on the single parameter, , is shown to describe consistently the
spectral evolution.Comment: Revtex, 4 pages, 3 postscript figures. To appear in Phys. Rev. Let
- …
