3,403 research outputs found

    Facial Cosmetics Have Little Effect on Attractiveness Judgments Compared with Identity

    Get PDF
    The vast majority of women in modern societies use facial cosmetics, which modify facial cues to attractiveness. However, the size of this increase remains unclear - how much more attractive are individuals after an application of cosmetics? Here, we utilised a 'new statistics' approach, calculating the effect size of cosmetics on attractiveness using a within-subjects design, and compared this with the effect size due to identity - that is, the inherent differences in attractiveness between people. Women were photographed with and without cosmetics, and these images were rated for attractiveness by a second group of participants. The proportion of variance in attractiveness explained by identity was much greater than the variance within models due to cosmetics. This result was unchanged after statistically controlling for the perceived amount of cosmetics that each model used. Although cosmetics increase attractiveness, the effect is small, and the benefits of cosmetics may be inflated in everyday thinking. © 2015, Pion Limited. All rights reserved

    Scaling of plasma parameters in the SOL and divertor for Alcator C-Mod

    Get PDF

    Software for Data Acquisition AMC Module with PCI Express Interface

    Get PDF
    Free Electron Laser in Hamburg (FLASH) and XRay Free Electron Laser (XFEL) are linear accelerators that require a complex and accurate Low Level Radio Frequency (LLRF) control system. Currently working systems are based on aged Versa Module Eurocard (VME) architecture. One of the alternatives for the VME bus is the Advanced Telecommunications and Computing Architecture (ATCA) standard. The ATCA based LLRF controller mainly consists of a few ATCA carrier boards and several Advanced Mezzanine Cards (AMC). AMC modules are available in variety of functions such as: ADC, DAC, data storage, data links and even CPU cards. This paper focuses on the software that allows user to collect and plot the data from commercially available TAMC900 board

    Correlated radial velocity and X-ray variations in HD 154791/4U 1700+24

    Get PDF
    We present evidence for approximately 400-d variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported approximately 400 d variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fit with an eccentric orbit with period 404 +/- 3 d, amplitude K=0.75 +/- 0.12 km/s and eccentricity e=0.26 +/- 0.15. There are also indications of variations on longer time scales >~ 2000 d. We have re-examined all available ASM data following an unusually large X-ray outburst in 1997-98, and confirm that the 1-d averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400 +/- 20 d. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108 +/- 0.012 ASM count/s (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 d after the time of periastron according to the eccentric orbital fit. If the 400 d oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron-star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.Comment: 6 pages, 2 figures; accepted by Ap

    Discovery of a Luminous Quasar in the Nearby Universe

    Full text link
    In the course of the Pico dos Dias survey (PDS), we identified the stellar like object PDS456 at coordinates alpha = 17h 28m 19.796s, delta = -14deg 15' 55.87'' (epoch 2000), with a relatively nearby (z = 0.184) and bright (B = 14.69) quasar. Its position at Galactic coordinates l_II = 10.4deg, b_II = +11.2deg, near the bulge of the Galaxy, may explain why it was not detected before. The optical spectrum of PDS456 is typical of a luminous quasar, showing a broad (FWHM ~ 4000 km/s) H_\beta line, very intense FeII lines and a weak [OIII]\lambda5007 line. PDS456 is associated to the infrared source IRAS 17254-1413 with a 60 \mum infrared luminosity L_{60} = 3.8 x 10^{45} erg/s. The relatively flat slopes in the infrared (\alpha(25,60) = -0.33 and \alpha(12,25) = -0.78) and a flat power index in the optical (F_{\nu} \propto \nu^{-0.72}) may indicate a low dust content. A good match between the position of PDS456 and the position of the X-ray source RXS J172819.3-141600 implies an X-ray luminosity L_x = 2.8 x 10^{44} erg/s. The good correlation between the strength of the emission lines in the optical and the X-ray luminosity, as well as the steep optical to X-ray index estimated (\alpha_{ox} = -1.64) suggest that PDS456 is radio quiet. A radio survey previously performed in this region yields an upper limit for radio power at ~ 5 GHz of ~ 2.6 x 10^{30} erg/s/Hz. We estimate the Galactic reddening in this line-of-sight to be A_B \simeq 2.0, implying an absolute magnitude M_B = -26.7 (using H_0 = 75 km s^{-1} Mpc^{-1} and q_0 = 0). In the optical, PDS456 is therefore 1.3 times more luminous than 3C 273 and the most luminous quasar in the nearby (z \leq 0.3) Universe.Comment: 12 pages, LaTeX (aasms4.sty) + 3 figures; accepted for publication in the Astrophysical Journal Letter

    Discovery of optical pulsations in V2116 Ophiuchi/GX 1+4

    Get PDF
    We report the detection of pulsations with 124\sim 124 s period in V2116 Oph, the optical counterpart of the low-mass X-ray binary GX 1+4. The pulsations are sinusoidal with modulation amplitude of up to 4% in blue light and were observed in ten different observing sessions during 1996 April-August using a CCD photometer at the 1.6-m and 0.6-m telescopes of Laborat\'orio Nacional de Astrof\'{\i}sica, in Brazil. The pulsations were also observed with the UBVRIUBVRI fast photometer. With only one exception the observed optical periods are consistent with those observed by the BATSE instrument on board the Compton Gamma Ray Observatory at the same epoch. There is a definite correlation between the observability of pulsations and the optical brightness of the system: V2116~Oph had RR magnitude in the range 15.315.515.3-15.5 when the pulsed signal was detected, and R=16.017.7R = 16.0-17.7 when no pulsations were present. The discovery makes GX 1+4 only the third of 35\sim 35 accretion-powered X-ray pulsars to be firmly detected as a pulsating source in the optical. The presence of flickering and pulsations in V2116 Oph adds strong evidence for an accretion disk scenario in this system. The absolute magnitude of the pulsed component on 1996 May 27 is estimated to be MV1.5M_V \sim -1.5. The implied dimensions for the emitting region are 1.1 R_{\sun}, 3.2 R_{\sun}, and 7.0 R_{\sun}, for black-body spectral distributions with T=105T = 10^5 K, 2×1042 \times 10^4 K, and 1×1041 \times 10^4 K, respectively.Comment: 9 pages, 3 figures in PostScript, latex, accepted for publication on the Astrophysical Journal Letter

    Evolution of spectral function in a doped Mott insulator : surface vs. bulk contributions

    Get PDF
    We study the evolution of the spectral function with progressive hole doping in a Mott insulator, La1xCaxVO3La_{1-x}Ca_xVO_3 with xx = 0.0 - 0.5. The spectral features indicate a bulk-to-surface metal-insulator transition in this system. Doping dependent changes in the bulk electronic structure are shown to be incompatible with existing theoretical predictions. An empirical description based on the single parameter, U/WU/W, is shown to describe consistently the spectral evolution.Comment: Revtex, 4 pages, 3 postscript figures. To appear in Phys. Rev. Let
    corecore