434 research outputs found
Dissociative electron attachment to the H2O molecule. I. Complex-valued potential-energy surfaces for the 2B1, 2A1, and 2B2 metastable states of the water anion
We present the results of calculations defining global, three-dimensional
representations of the complex-valued potential-energy surfaces of the doublet
B1, doublet A1, and doublet B2 metastable states of the water anion that
underlie the physical process of dissociative electron attachment to water. The
real part of the resonance energies is obtained from configuration-interaction
calculations performed in a restricted Hilbert space, while the imaginary part
of the energies (the widths) is derived from complex Kohn scattering
calculations. A diabatization is performed on the 2A1 and 2B2 surfaces, due to
the presence of a conical intersection between them. We discuss the
implications that the shapes of the constructed potential-energy surfaces will
have upon the nuclear dynamics of dissociative electron attachment to H2O.
This work originally appeared as Phys Rev A 75, 012710 (2007). Typesetting
errors in the published version have been corrected here.Comment: Corrected version of PRA 75, 012710 (2007
Dissociative electron attachment to the H2O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model
We report the results of a first-principles study of dissociative electron
attachment to H2O. The cross sections are obtained from nuclear dynamics
calculations carried out in full dimensionality within the local complex
potential model by using the multi-configuration time-dependent Hartree method.
The calculations employ our previously obtained global, complex-valued,
potential-energy surfaces for the three (doublet B1, doublet A1, and doublet
B2) electronic Feshbach resonances involved in this process. These three
metastable states of H2O- undergo several degeneracies, and we incorporate both
the Renner-Teller coupling between the B1 and A1 states as well as the conical
intersection between the A1 and B2 states into our treatment. The nuclear
dynamics are inherently multidimensional and involve branching between
different final product arrangements as well as extensive excitation of the
diatomic fragment. Our results successfully mirror the qualitative features of
the major fragment channels observed, but are less successful in reproducing
the available results for some of the minor channels. We comment on the
applicability of the local complex potential model to such a complicated
resonant system.Comment: Corrected version of Phys Rev A 75, 012711 (2007
Multiconfiguration Time-Dependent Hartree-Fock Treatment of Electronic and Nuclear Dynamics in Diatomic Molecules
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is
formulated for treating the coupled electronic and nuclear dynamics of diatomic
molecules without the Born- Oppenheimer approximation. The method treats the
full dimensionality of the electronic motion, uses no model interactions, and
is in principle capable of an exact nonrelativistic description of diatomics in
electromagnetic fields. An expansion of the wave function in terms of
configurations of orbitals whose dependence on internuclear distance is only
that provided by the underlying prolate spheroidal coordinate system is
demonstrated to provide the key simplifications of the working equations that
allow their practical solution. Photoionization cross sections are also
computed from the MCTDHF wave function in calculations using short pulses.Comment: Submitted to Phys Rev
Nuclear Anapole Moments
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the
electromagnetic current operator. Although the existence of this moment was
recognized theoretically soon after the discovery of parity nonconservation
(PNC), its experimental isolation was achieved only recently, when a new level
of precision was reached in a measurement of the hyperfine dependence of atomic
PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this
paper, we present the details of the first calculation of these anapole moments
in the framework commonly used in other studies of hadronic PNC, a meson
exchange potential that includes long-range pion exchange and enough degrees of
freedom to describe the five independent amplitudes induced by
short-range interactions. The resulting contributions of pi-, rho-, and
omega-exchange to the single-nucleon anapole moment, to parity admixtures in
the nuclear ground state, and to PNC exchange currents are evaluated, using
configuration-mixed shell-model wave functions. The experimental anapole moment
constraints on the PNC meson-nucleon coupling constants are derived and
compared with those from other tests of the hadronic weak interaction. While
the bounds obtained from the anapole moment results are consistent with the
broad ``reasonable ranges'' defined by theory, they are not in good agreement
with the constraints from the other experiments. We explore possible
explanations for the discrepancy and comment on the potential importance of new
experiments.Comment: 53 pages; 10 figures; revtex; submitted to Phys Rev
Nuclear electron capture rate in stellar interiors and the case of 7Be
Nuclear electron capture rate from continuum in an astrophysical plasma
environment (like solar core) is calculated using a modified Debye-Huckel
screening potential and the related non-Gaussian q-distribution of electron
momenta. For q=1 the well-known Debye-Huckel results are recovered. The value
of q can be derived from the fluctuation of number of particles and temperature
inside the Debye sphere. For 7Be continuum electron capture in solar core, we
find an increase of 7 -- 10 percent over the rate calculated with standard
Debye-Huckel potential. The consequence of this results is a reduction of the
same percentage of the SSM 8B solar neutrino flux, leaving unchanged the SSM
7Be flux.Comment: 8 pages, 1 figure, IOP macro style, submitted to JP
Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing
We have investigated the role of proton-neutron pairing in the context of the
Quasiparticle Random Phase approximation formalism. This way the neutrinoless
double beta decay matrix elements of the experimentally interesting A= 48, 76,
82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found
that the inclusion of proton-neutron pairing influences the neutrinoless double
beta decay rates significantly, in all cases allowing for larger values of the
expectation value of light neutrino masses. Using the best presently available
experimental limits on the half life-time of neutrinoless double beta decay we
have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page
Large Extra Dimensions, Sterile neutrinos and Solar Neutrino Data
Solar, atmospheric and LSND neutrino oscillation results require a light
sterile neutrino, , which can exist in the bulk of extra dimensions.
Solar , confined to the brane, can oscillate in the vacuum to the zero
mode of and via successive MSW transitions to Kaluza-Klein states of
. This new way to fit solar data is provided by both low and
intermediate string scale models. From average rates seen in the three types of
solar experiments, the Super-Kamiokande spectrum is predicted with 73%
probability, but dips characteristic of the 0.06 mm extra dimension should be
seen in the SNO spectrum.Comment: 4 pages, 2 figure
White Paper: Measuring the Neutrino Mass Hierarchy
This white paper is a condensation of a report by a committee appointed
jointly by the Nuclear Science and Physics Divisions at Lawrence Berkeley
National Laboratory (LBNL). The goal of this study was to identify the most
promising technique(s) for resolving the neutrino mass hierarchy. For the most
part, we have relied on calculations and simulations presented by the
proponents of the various experiments. We have included evaluations of the
opportunities and challenges for these experiments based on what is available
already in the literature.Comment: White paper prepared for Snowmass-201
- …
