4,986 research outputs found

    Structural transitions in vertically and horizontally coupled parabolic channels of Wigner crystals

    Full text link
    Structural phase transitions in two vertically or horizontally coupled channels of strongly interacting particles are investigated. The particles are free to move in the xx-direction but are confined by a parabolic potential in the yy-direction. They interact with each other through a screened power-law potential (r−ne−r/λr^{-n}e^{-r/\lambda}). In vertically coupled systems the channels are stacked above each other in the direction perpendicular to the (x,y)(x,y)-plane, while in horizontally coupled systems both channels are aligned in the confinement direction. Using Monte Carlo (MC) simulations we obtain the ground state configurations and the structural transitions as a function of the linear particle density and the separation between the channels. At zero temperature the vertically coupled system exhibits a rich phase diagram with continuous and discontinuous transitions. On the other hand the vertically coupled system exhibits only a very limited number of phase transitions due to its symmetry. Further we calculated the normal modes for the Wigner crystals in both cases. From MC simulations we found that in the case of vertically coupled systems the zigzag transition is only possible for low densities. A Ginzburg-Landau theory for the zigzag transition is presented, which predicts correctly the behavior of this transition from which we interpret the structural phase transition of the Wigner crystal through the reduction of the Brillouin zone.Comment: 9 pages, 13 figure

    Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field

    Full text link
    The ground state of colloidal magnetic particles in a modulated channel are investigated as function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo (MC) simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential and the commensurability factor of the system. Interestingly, we found first and second order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A re-entrant behavior is found between two- and four-chain configurations, with continuous second order transitions. Novel configurations are found consisting of frozen in solitons. By changing the orientation and/or strength of the magnetic field and/or the strength and the spatial frequency of the periodic substrate potential, the system transits through different phases.Comment: Submitted to Phys. Rev. E (10 pages, 12 figures

    PAHs and star formation in the HII regions of nearby galaxies M83 and M33

    Get PDF
    We present mid-infrared (MIR) spectra of HII regions within star-forming galaxies M83 and M33. Their emission features are compared with Galactic and extragalactic HII regions, HII-type galaxies, starburst galaxies, and Seyfert/LINER type galaxies. Our main results are as follows: (i) the M33 and M83 HII regions lie in between Seyfert/LINER galaxies and HII-type galaxies in the 7.7/11.3 - 6.2/11.3 plane, while the different sub-samples exhibiting different 7.7/6.2 ratios; (ii) Using the NASA Ames PAH IR Spectroscopic database, we demonstrate that the 6.2/7.7 ratio does not effectively track PAH size, but the 11.3/3.3 PAH ratio does; (iii) variations on the 17 μ\mum PAH band depends on object type; however, there is no dependence on metallicity for both extragalactic HII regions and galaxies; (iv) the PAH/VSG intensity ratio decreases with the hardness of the radiation field and galactocentric radius (Rg), yet the ionization alone cannot account for the variation seen in all of our sources; (v) the relative strength of PAH features does not change significantly with increasing radiation hardness, as measured through the [NeIII]/[NeII] ratio and the ionization index; (vi) We present PAH SFR calibrations based on the tight correlation between the 6.2, 7.7, and 11.3 μ\mum PAH luminosities with the 24 μ\mum luminosity and the combination of the 24 μ\mum and Hα\alpha luminosity; (vii) Based on the total luminosity from PAH and FIR emission, we argue that extragalactic HII regions are more suitable templates in modeling and interpreting the large scale properties of galaxies compared to Galactic HII regions.Comment: 26 pages, 24 figures, 6 tables. Accepted for publication in MNRA

    Discrete Material and Thickness Optimization of sandwich structures

    Get PDF

    A new thickness parameterization for Discrete Material and Thickness Optimization

    Get PDF
    • …
    corecore