2,537 research outputs found

    Exploring Planets with Directed Aerial Robot Explorers

    Get PDF
    Global Aerospace Corporation (GAC) is developing a revolutionary system architecture for exploration of planetary atmospheres and surfaces from atmospheric altitudes. The work is supported by the NASA Institute for Advanced Concepts (NIAC). The innovative system architecture relies upon the use of Directed Aerial Robot Explorers (DAREs), which essentially are long-duration-flight autonomous balloons with trajectory control capabilities that can deploy swarms of miniature probes over multiple target areas. Balloon guidance capabilities will offer unprecedented opportunities in high-resolution, targeted observations of both atmospheric and surface phenomena. Multifunctional microprobes will be deployed from the balloons once over the target areas, and perform a multitude of functions, such as atmospheric profiling or surface exploration, relaying data back to the balloons or an orbiter. This architecture will enable low-cost, low-energy, long-term global exploration of planetary atmospheres and surfaces. This paper focuses on a conceptual analysis of the DARE architecture capabilities and science applications for Venus, Titan and Jupiter. Preliminary simulations with simplified atmospheric models show that a relatively small trajectory control wing can enable global coverage of the atmospheres of Venus and Titan by a single balloon over a 100-day mission. This presents unique opportunities for global in situ sampling of the atmospheric composition and dynamics, atmospheric profiling over multiple sites with small dropsondes and targeted deployment of surface microprobes. At Jupiter, path guidance capabilities of the DARE platforms permits targeting localized regions of interest, such as "hot spots" or the Great Red Spot. A single DARE platform at Jupiter can sample major types of the atmospheric flows (zones and belts) over a 100-day mission. Observations by deployable probes would reveal if the differences exist in radiative, dynamic and compositional environments at these sites

    Oscillations and velocity structure of a long-lived cyclonic spot

    Get PDF
    Dark brown cyclonic spots ('barges') at 14°N were studied by using Voyager 1 and 2 images of Jupiter. Movie sequences were made to study the spots' behavior over intervals of 50 days and longer. These movies revealed that the length and width vary by ±9% with a period of about 15 days, while the area remains approximately constant. The horizontal velocity field was investigated for an interval of about 1 day. Flow around the largest barge (feature 6) occurs as a ring current. The vorticity inferred is about 2½ times that of the ambient cyclonic zonal circulation, and about one-half the value of the local planetary vorticity. Length and width variations appear to be associated with a nonzero horizontal divergence field. If the oscillations are a natural mode of the system, the 15-day period will provide an important datum for testing models of stable closed vortices

    Vertical structure of tropospheric winds on gas giants

    Get PDF
    Support for this work was generously provided by the National Science Foundation.Zonal mean zonal velocity profiles from cloud-tracking observations on Jupiter and Saturn are used to infer latitudinal variations of potential temperature consistent with a shear stable potential vorticity distribution. Immediately below the cloud tops, density stratification is weaker on the poleward and stronger on the equatorward flanks of midlatitude jets, while at greater depth the opposite relation holds. Thermal wind balance then yields the associated vertical shears of midlatitude jets in an altitude range bounded above by the cloud-tops and bounded below by the level where the latitudinal gradient of static stability changes sign. The inferred vertical shear below the cloud tops is consistent with existing thermal profiling of the upper troposphere.The sense of the associated mean meridional circulation in the upper troposphere is discussed and expected magnitudes are given based on existing estimates of the radiative timescale on each planet.Publisher PDFPeer reviewe

    Jupiter's visible aurora and Io footprint

    Get PDF
    Images obtained by the Galileo spacecraft's solid-state imaging (SSI) system represent the first survey of Jupiter's northern auroral emissions at visible wavelengths and on the nightside of the planet. These images captured the emissions with unprecedented spatial resolutions down to ∼26 km pixel^(−1). Four classes of emission were observed: (1) a continuous, primary arc associated with the middle/outer magnetosphere, (2) a variable secondary arc associated with the region just beyond Io's torus, (3) diffuse “polar cap” emission, and (4) a patch and tail associated with the magnetic footprint of Io. The primary arc emission occurs at an altitude 245±30 km above the 1-bar pressure level. Its horizontal width is typically a few hundred kilometers, and its total optical power output varied between ∼10^(10) and ∼10^(11) W in observations taken months apart. The location of the primary arc in planetary coordinates is similar to that on dayside images at other wavelengths and does not vary with local time. The morphology of the primary arc is not constant, changing from a multiply branched, latitudinally distributed pattern after dusk to a single, narrow arc before dawn. Emission from Io's ionospheric footprint is distinct from both the primary and secondary arcs. Measurements of its optical power output ranged from 2 to 7×10^8 W

    A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model

    Get PDF
    Surface wind stresses and dust lifting in the south polar region of Mars are examined with a three-dimensional numerical model. The focus of this study is the middle to late southern spring period when cap-edge dust lifting events are observed. Mesoscale model simulations of high southern latitudes are conducted at three dates within this season (L_s = 225°, 255°, and 310°). Assuming that dust injection is related to the saltation of sand-sized grains or aggregates, the Mars MM5 mesoscale model predicts surface wind stresses of sufficient strength to initiate movement of sand-sized particles (∼100 μm), and hence dust lifting, during all three periods. The availability of dust and/or sand-sized particles is not addressed within this study. Instead, the degree to which the existence of sufficiently strong winds limit dust injection is examined. By eliminating forcing elements from the model, the important dynamical modes generating high wind stresses are isolated. The direct cap-edge thermal contrast (and topographic slopes in some locations) provides the primary drive for high surface wind stresses at the cap edge, while sublimation flow is not found to be particularly important, at these three dates. Simulations in which dust is injected into the lowest model layer when wind stresses exceed a threshold show similar patterns of atmospheric dust to those seen in recent observations. Comparison between these simulations and those without active dust injection shows no signs of consistent positive or negative feedback due to dust clouds on the surface wind stress fields during the late spring season examined here

    Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    Get PDF
    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter’s poles show a chaotic scene, unlike Saturn’s poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth’s Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno’s measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter’s core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content

    Two-year observations of the Jupiter polar regions by JIRAM on board Juno

    Get PDF
    We observed the evolution of Jupiter's polar cyclonic structures over two years between February 2017 and February 2019, using polar observations by the Jovian InfraRed Auroral Mapper, JIRAM, on the Juno mission. Images and spectra were collected by the instrument in the 5‐μm wavelength range. The images were used to monitor the development of the cyclonic and anticyclonic structures at latitudes higher than 80° both in the northern and the southern hemispheres. Spectroscopic measurements were then used to monitor the abundances of the minor atmospheric constituents water vapor, ammonia, phosphine and germane in the polar regions, where the atmospheric optical depth is less than 1. Finally, we performed a comparative analysis with oceanic cyclones on Earth in an attempt to explain the spectral characteristics of the cyclonic structures we observe in Jupiter's polar atmosphere

    Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars

    Get PDF
    We investigate the triggering mechanism of a cross-equatorial dust storm observed by Mars Global Surveyor in 1999. This storm, which had a significant impact on global mean temperatures, was seen in visible and infrared data to commence with the transport of linear dust fronts from the northern high latitudes into the southern tropics. However, other similar transport events observed in northern fall and winter did not lead to large dust storms. Based on off-line Lagrangian particle transport analysis using a high resolution Mars general circulation model, we propose a simple explanation for the diurnal, seasonal and interannual variability of this type of frontal activity, and of the resulting dust storms, that highlights the cooperative interaction between northern hemisphere fronts associated with low pressure cyclones and tidally-modified return branch of the Hadley circulation
    corecore