9,129 research outputs found

    Latest MAGIC discoveries pushing redshift boundaries in VHE Astrophysics

    Full text link
    The search for detection of gamma-rays from distant AGNs by Imaging Atmospheric Cherenkov Telescopes (IACTs) is challenging at high redshifts, not only because of lower flux due to the distance of the source, but also due to the consequent absorption of gamma-rays by the extragalactic background light (EBL). Before the MAGIC discoveries reported in this work, the farthest source ever detected in the VHE domain was the blazar PKS 1424+240, at z>0.6. MAGIC, a system of two 17 m of diameter IACTs located in the Canary island of La Palma, has been able to go beyond that limit and push the boundaries for VHE detection to redshifts z~ 1. The two sources detected and analyzed, the blazar QSO B0218+357 and the FSRQ PKS 1441+25 are located at redshift z=0.944 and z=0.939 respectively. QSO B0218+357 is also the first gravitational lensed blazar ever detected in VHE. The activity, triggered by Fermi-LAT in high energy gamma-rays, was followed up by other instruments, such as the KVA telescope in the optical band and the Swift-XRT in X-rays. In the present work we show results on MAGIC analysis on QSO B0218+357 and PKS 1441+25 together with multiwavelength lightcurves. The collected dataset allowed us to test for the first time the present generation of EBL models at such distances.Comment: 5 pages, 4 figure

    Mice lacking C1q or C3 show accelerated rejection of minor H disparate skin grafts and resistance to induction of tolerance

    Get PDF
    Complement activation is known to have deleterious effects on organ transplantation. On the other hand, the complement system is also known to have an important role in regulating immune responses. The balance between these two opposing effects is critical in the context of transplantation. Here, we report that female mice deficient in C1q (C1qa(−/−)) or C3 (C3(−/−)) reject male syngeneic grafts (HY incompatible) at an accelerated rate compared with WT mice. Intranasal HY peptide administration, which induces tolerance to syngeneic male grafts in WT mice, fails to induce tolerance in C1qa(−/−) or C3(−/−) mice. The rejection of the male grafts correlated with the presence of HY D(b)Uty-specific CD8(+) T cells. Consistent with this, peptide-treated C1qa(−/−) and C3(−/−) female mice rejecting male grafts exhibited more antigen-specific CD8(+)IFN-γ(+) and CD8(+)IL-10(+) cells compared with WT females. This suggests that accumulation of IFN-γ- and IL-10-producing T cells may play a key role in mediating the ongoing inflammatory process and graft rejection. Interestingly, within the tolerized male skin grafts of peptide-treated WT mice, IFN-γ, C1q and C3 mRNA levels were higher compared to control female grafts. These results suggest that C1q and C3 facilitate the induction of intranasal tolerance

    Security considerations for Galois non-dual RLWE families

    Get PDF
    We explore further the hardness of the non-dual discrete variant of the Ring-LWE problem for various number rings, give improved attacks for certain rings satisfying some additional assumptions, construct a new family of vulnerable Galois number fields, and apply some number theoretic results on Gauss sums to deduce the likely failure of these attacks for 2-power cyclotomic rings and unramified moduli

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Development of Grid e-Infrastructure in South-Eastern Europe

    Full text link
    Over the period of 6 years and three phases, the SEE-GRID programme has established a strong regional human network in the area of distributed scientific computing and has set up a powerful regional Grid infrastructure. It attracted a number of user communities and applications from diverse fields from countries throughout the South-Eastern Europe. From the infrastructure point view, the first project phase has established a pilot Grid infrastructure with more than 20 resource centers in 11 countries. During the subsequent two phases of the project, the infrastructure has grown to currently 55 resource centers with more than 6600 CPUs and 750 TBs of disk storage, distributed in 16 participating countries. Inclusion of new resource centers to the existing infrastructure, as well as a support to new user communities, has demanded setup of regionally distributed core services, development of new monitoring and operational tools, and close collaboration of all partner institution in managing such a complex infrastructure. In this paper we give an overview of the development and current status of SEE-GRID regional infrastructure and describe its transition to the NGI-based Grid model in EGI, with the strong SEE regional collaboration.Comment: 22 pages, 12 figures, 4 table

    Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability

    Get PDF
    This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe
    corecore