2,642 research outputs found

    Relevance of Cooperative Lattice Effects and Correlated Disorder in Phase-Separation Theories for CMR Manganites

    Full text link
    Previous theoretical investigations of colossal magnetoresistance (CMR) materials explain this effect using a ``clustered'' state with preformed ferromagnetic islands that rapidly align their moments with increasing external magnetic fields. While qualitatively successful, explicit calculations indicate drastically different typical resistivity values in two- and three-dimensional lattices, contrary to experimental observations. This conceptual bottleneck in the phase-separated CMR scenario is resolved here considering the cooperative nature of the Mn-oxide lattice distortions. This induces power-law correlations in the quenched random fields used in toy models with phase competition. When these effects are incorporated, resistor-network calculations reveal very similar results in two and three dimensions, solving the puzzle.Comment: RevTeX 4, 4 figure

    Cold Attractive Spin Polarized Fermi Lattice Gases and the Doped Positive U Hubbard Model

    Full text link
    Experiments on polarized fermion gases performed by trapping ultracold atoms in optical lattices, allow the study of an attractive Hubbard model for which the strength of the on site interaction is tuned by means of a Feshbach resonance. Using a well-known particle-hole transformation we discuss how results obtained for this system can be reinterpreted in the context of a doped repulsive Hubbard model. In particular we show that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state corresponds to the striped state of the two-dimensional doped positive U Hubbard model. We then use the results of numerical studies of the striped state to relate the periodicity of the FFLO state to the spin polarization. We also comment on the relationship of the dx2y2d_{x^2-y^2} superconducting phase of the doped 2D repulsive Hubbard model to a d-wave spin density wave state for the attractive case.Comment: 4 pages, 2 figure

    Interference Effects in the Conductance of Multi-Level Quantum Dots

    Full text link
    Using exact-diagonalization techniques supplemented by a Dyson equation embedding procedure, the transport properties of multilevel quantum dots are investigated in the Kondo regime. The conductance can be decomposed into the contributions of each level. It is shown that these channels can carry a different phase, and destructive interference processes are observed when the phase difference between them is ±π\pm\pi. This effect is very different from those observed in bulk metals with magnetic impurities, where the phase differences play no significant role. The effect is also different from other recent studies of interference processes in dots, as discussed in the text. In particular, no external magnetic field is here introduced, and the hopping amplitudes dot-leads for all levels are the same. However, conductance cancellations induced by interactions are still observed. Another interesting effect reported here is the formation of localized states that do not participate in the transport. When one of these states crosses the Fermi level, the electronic occupation of the quantum dot changes, modifying the many-body physics of the system and indirectly affecting the transport properties. Novel discontinuities between two finite conductance values can occur as the gate voltage is varied, as discussed here

    Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO₂ vent system

    Get PDF
    Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO₂. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO₂ vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO₂. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO₂, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO₂ environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO₂. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification

    CORE and the Haldane Conjecture

    Get PDF
    The Contractor Renormalization group formalism (CORE) is a real-space renormalization group method which is the Hamiltonian analogue of the Wilson exact renormalization group equations. In an earlier paper\cite{QGAF} I showed that the Contractor Renormalization group (CORE) method could be used to map a theory of free quarks, and quarks interacting with gluons, into a generalized frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to study these theories. Since generalizations of HAF's exhibit all sorts of subtle behavior which, from a continuum point of view, are related to topological properties of the theory, it is important to know that CORE can be used to extract this physics. In this paper I show that despite the folklore which asserts that all real-space renormalization group schemes are necessarily inaccurate, simple Contractor Renormalization group (CORE) computations can give highly accurate results even if one only keeps a small number of states per block and a few terms in the cluster expansion. In addition I argue that even very simple CORE computations give a much better qualitative understanding of the physics than naive renormalization group methods. In particular I show that the simplest CORE computation yields a first principles understanding of how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1 HAF.Comment: 36 pages, 4 figures, 5 tables, latex; extensive additions to conten

    Attracting Manifold for a Viscous Topology Transition

    Full text link
    An analytical method is developed describing the approach to a finite-time singularity associated with collapse of a narrow fluid layer in an unstable Hele-Shaw flow. Under the separation of time scales near a bifurcation point, a long-wavelength mode entrains higher-frequency modes, as described by a version of Hill's equation. In the slaved dynamics, the initial-value problem is solved explicitly, yielding the time and analytical structure of a singularity which is associated with the motion of zeroes in the complex plane. This suggests a general mechanism of singularity formation in this system.Comment: 4 pages, RevTeX, 3 ps figs included with text in uuencoded file, accepted in Phys. Rev. Let

    ASPETTI DELLA PRODUZIONE DEI PICCOLI RUMINANTI CON IMPATTO SULLA SALUTE UMANA

    Get PDF
    Negli ultimi anni l’attenzione del consumatore si è sempre più orientata verso le caratteristiche nutrizionali degli alimenti. Queste proprietà sono di grande importanza anche per quanto riguarda le produzioni dei piccoli ruminanti. Il presente lavoro ha lo scopo di riassumere i principali risultati emersi dal progetto di ricerca “Aspetti della produzione dei piccoli ruminanti con particolare impatto sulla salute umana”. Sono stati analizzati mediante i metodi descritti in letteratura: 1) i polimorfismi genetici dei biopeptidi del latte dei piccoli ruminanti; 2) le attività di alcuni enzimi della membrana del globulo di grasso e la frazione lipidica del latte ovino; 3) la qualità nutrizionale del latte e del formaggio ovino in relazione all’intensità di pascolamento; 4) le componenti bioattive di siero e scotta residui alla produzione dei formaggi ovi-caprini; 5) la resistenza genetica alle encefalopatie spongiformi trasmissibili e l’efficienza economica e biologica in razze ovine. I risultati ottenuti evidenziano, da svariati punti di vista, numerose potenzialità legate alle produzioni dei piccoli ruminanti e alle loro ricadute sulla salute umana
    corecore