10 research outputs found

    Circadian and ultradian cardiovascular rhythmicity in obese children

    No full text
    UNLABELLED Altered circadian and ultradian blood pressure (BP) and heart rate (HR) rhythmicity have been described in diseases with increased cardiovascular risk. We analyzed cardiovascular rhythmicity in obese children. BP and HR rhythmicity was assessed with Fourier analysis from 24-h ambulatory BP measurements in 75 obese children and compared with an age- and gender-matched, lean healthy reference group of 150 subjects. Multivariate regression analysis was applied to identify significant independent factors explaining variability of rhythmicity. Prevalence of 24- and 6-h BP rhythmicity in the obese group was lower (p = 0.03 and p = 0.02), whereas the prevalence of HR rhythmicity was comparable in both groups. Excluding hypertensive participants, the results remained similar. Twenty-four-hour BP and HR acrophase were delayed in obese children (p = 0.004, p < 0.0001), 24-h BP amplitude did not differ (p = 0.07), and 24-h HR amplitude was blunted (p = < 0.0001). BP Mesor in the obese group was higher (p = 0.02); HR Mesor did not differ (p = 0.1). Multivariate regression analysis failed to identify a single anthropometric or blood pressure parameter explaining the variability of BP and HR rhythmicity. CONCLUSION Prevalence and parameters of circadian and ultradian BP and HR rhythmicity in obese children are altered compared to a healthy reference group, independent of preexisting hypertension. WHAT IS KNOWN • Altered cardiovascular rhythmicity has been described in children with different diseases such as primary hypertension or chronic renal failure. What is New: • This study reveals altered cardiovascular rhythmicity in obese children compared to an age and gender-matched healthy reference group independent from preexisting hypertension

    BMI as a Mediator of the Relationship between Muscular Fitness and Cardiometabolic Risk in Children: A Mediation Analysis

    No full text
    ObjectiveMuscular fitness levels have been associated with cardiometabolic risk in children, although whether body weight acts as a confounder or as an intermediate variable in this relationship remains controversial. The aim of this study was to examine whether the association between muscular fitness and cardiometabolic risk factors is mediated by body mass index (BMI).Design and methodsCross-sectional study using a sample of 1158 schoolchildren aged 8-11 years from the province of Cuenca, Spain. We measured anthropometrics and biochemical variables and we calculated a muscular fitness index as the sum of z-scores of handgrip dynamometry/weight and standing long jump, and we estimated a previously validated cardiometabolic risk index (CMRI). Linear regression models were fitted for mediation analysis to assess whether the association between muscular fitness and cardiometabolic risk was mediated by BMI.ResultsChildren with normal weight (NW) had a better cardiometabolic risk profile than their overweight (OW) or obese (OB) peers after controlling for muscular fitness. Marginal estimated mean ± SE values for NW, OW and OB categories of CMRI were -0.75 ± 0.06 0.05 ± 0.09 >-1.16 ± 0.13 for lower, middle and upper quartiles of muscular fitness in boys and 1.01 ± 0.16 > 0.10 ± 0.09 > -1.02 ± 0.15 in girls, both p ConclusionsBMI mediates the association between muscular fitness and cardiometabolic risk in schoolchildren. Overall, good muscular fitness is associated with lower cardiometabolic risk, but particularly when accompanied by normal weight

    Dyslipidemia and reference values for fasting plasma lipid concentrations in Danish/North-European White children and adolescents

    No full text
    Abstract Background Dyslipidemia is reported in 27 − 43% of children and adolescents with overweight/obesity and tracks into adulthood, increasing the risk of cardiovascular morbidity. Cut-off values for fasting plasma lipid concentrations are typically set at fixed levels throughout childhood. The objective of this cross-sectional study was to generate fasting plasma lipid references for a Danish/North-European White population-based cohort of children and adolescents, and investigate the prevalence of dyslipidemia in this cohort as well as in a cohort with overweight/obesity. Methods A population-based cohort of 2141 (1275 girls) children and adolescents aged 6 − 19 (median 11.5) years was recruited from 11 municipalities in Denmark. Additionally, a cohort of children and adolescents of 1421 (774 girls) with overweight/obesity aged 6 − 19 years (median 11.8) was recruited for the study. Height, weight, and fasting plasma lipid concentrations were measured on all participants. Smoothed reference curves and percentiles were generated using the Generalized Additive Models for Location Scale and Shape package in the statistical software R. Results In the population-based cohort, plasma concentrations of total cholesterol (TC) (P < 0.05), low-density lipoprotein cholesterol (LDL) (P < 0.005), and high-density lipoprotein cholesterol (HDL) (P < 0.005) were higher in the youngest compared to the oldest tertile. Fasting plasma levels of triglycerides (TG) (P < 0.005) increased with age in both sexes. In boys, non-HDL was lower in the oldest compared to the youngest tertile (P < 0.0005). Concentrations of TC, LDL, non-HDL, and TG were higher (P < 0.05), and HDL lower (P < 0.05) in the cohort with overweight/obesity in both sexes and for all ages except for TC in the youngest girls. The overall prevalence of dyslipidemia was 6.4% in the population-based cohort and 28.0% in the cohort with overweight/obesity. The odds ratio for exhibiting dyslipidemia in the cohort with overweight/obesity compared with the population-based cohort was 6.2 (95% CI: 4.9 − 8.1, P < 2*10−16). Conclusion Fasting plasma lipid concentrations change during childhood and adolescence and differ with sex and age. Children and adolescents with obesity have increased concentrations of circulating lipids and exhibit an increased prevalence of dyslipidemia. Trial registration The study is part of The Danish Childhood Obesity Biobank; ClinicalTrials.gov ID-no.: NCT00928473 retrospectively registered on June 25th 2009
    corecore