17,955 research outputs found
Elliptic instability in the Lagrangian-averaged Euler-Boussinesq-alpha equations
We examine the effects of turbulence on elliptic instability of rotating
stratified incompressible flows, in the context of the Lagragian-averaged
Euler-Boussinesq-alpha, or \laeba, model of turbulence. We find that the \laeba
model alters the instability in a variety of ways for fixed Rossby number and
Brunt-V\"ais\"al\"a frequency. First, it alters the location of the instability
domains in the parameter plane, where is the
angle of incidence the Kelvin wave makes with the axis of rotation and
is the eccentricity of the elliptic flow, as well as the size of the associated
Lyapunov exponent. Second, the model shrinks the width of one instability band
while simultaneously increasing another. Third, the model introduces bands of
unstable eccentric flows when the Kelvin wave is two-dimensional. We introduce
two similarity variables--one is a ratio of the Brunt-V\"ais\"al\"a frequency
to the model parameter , and the other is the
ratio of the adjusted inverse Rossby number to the same model parameter. Here,
is the turbulence correlation length, and is the Kelvin wave
number. We show that by adjusting the Rossby number and Brunt-V\"ais\"al\"a
frequency so that the similarity variables remain constant for a given value of
, turbulence has little effect on elliptic instability for small
eccentricities . For moderate and large eccentricities,
however, we see drastic changes of the unstable Arnold tongues due to the
\laeba model.Comment: 23 pages (sigle spaced w/figure at the end), 9 figures--coarse
quality, accepted by Phys. Fluid
Variational Principles for Stochastic Fluid Dynamics
This paper derives stochastic partial differential equations (SPDEs) for
fluid dynamics from a stochastic variational principle (SVP). The Legendre
transform of the Lagrangian formulation of these SPDEs yields their Lie-Poisson
Hamiltonian form. The paper proceeds by: taking variations in the SVP to derive
stochastic Stratonovich fluid equations; writing their It\^o representation;
and then investigating the properties of these stochastic fluid models in
comparison with each other, and with the corresponding deterministic fluid
models. The circulation properties of the stochastic Stratonovich fluid
equations are found to closely mimic those of the deterministic ideal fluid
models. As with deterministic ideal flows, motion along the stochastic
Stratonovich paths also preserves the helicity of the vortex field lines in
incompressible stochastic flows. However, these Stratonovich properties are not
apparent in the equivalent It\^o representation, because they are disguised by
the quadratic covariation drift term arising in the Stratonovich to It\^o
transformation. This term is a geometric generalisation of the quadratic
covariation drift term already found for scalar densities in Stratonovich's
famous 1966 paper. The paper also derives motion equations for two examples of
stochastic geophysical fluid dynamics (SGFD); namely, the Euler-Boussinesq and
quasigeostropic approximations.Comment: 19 pages, no figures, 2nd version. To appear in Proc Roy Soc A.
Comments to author are still welcome
K\'arm\'an--Howarth Theorem for the Lagrangian averaged Navier-Stokes alpha model
The K\'arm\'an--Howarth theorem is derived for the Lagrangian averaged
Navier-Stokes alpha (LANS) model of turbulence. Thus, the
LANS model's preservation of the fundamental transport structure of
the Navier-Stokes equations also includes preservation of the transport
relations for the velocity autocorrelation functions. This result implies that
the alpha-filtering in the LANS model of turbulence does not suppress
the intermittency of its solutions at separation distances large compared to
alpha.Comment: 11 pages, no figures. Includes an important remark by G. L. Eyink in
the conclusion
Two-component {CH} system: Inverse Scattering, Peakons and Geometry
An inverse scattering transform method corresponding to a Riemann-Hilbert
problem is formulated for CH2, the two-component generalization of the
Camassa-Holm (CH) equation. As an illustration of the method, the multi -
soliton solutions corresponding to the reflectionless potentials are
constructed in terms of the scattering data for CH2.Comment: 22 pages, 3 figures, draft, please send comment
Continuous and discrete Clebsch variational principles
The Clebsch method provides a unifying approach for deriving variational
principles for continuous and discrete dynamical systems where elements of a
vector space are used to control dynamics on the cotangent bundle of a Lie
group \emph{via} a velocity map. This paper proves a reduction theorem which
states that the canonical variables on the Lie group can be eliminated, if and
only if the velocity map is a Lie algebra action, thereby producing the
Euler-Poincar\'e (EP) equation for the vector space variables. In this case,
the map from the canonical variables on the Lie group to the vector space is
the standard momentum map defined using the diamond operator. We apply the
Clebsch method in examples of the rotating rigid body and the incompressible
Euler equations. Along the way, we explain how singular solutions of the EP
equation for the diffeomorphism group (EPDiff) arise as momentum maps in the
Clebsch approach. In the case of finite dimensional Lie groups, the Clebsch
variational principle is discretised to produce a variational integrator for
the dynamical system. We obtain a discrete map from which the variables on the
cotangent bundle of a Lie group may be eliminated to produce a discrete EP
equation for elements of the vector space. We give an integrator for the
rotating rigid body as an example. We also briefly discuss how to discretise
infinite-dimensional Clebsch systems, so as to produce conservative numerical
methods for fluid dynamics
Bounds on solutions of the rotating, stratified, incompressible, non-hydrostatic, three-dimensional Boussinesq equations
We study the three-dimensional, incompressible, non-hydrostatic Boussinesq
fluid equations, which are applicable to the dynamics of the oceans and
atmosphere. These equations describe the interplay between velocity and
buoyancy in a rotating frame. A hierarchy of dynamical variables is introduced
whose members () are made up from the
respective sum of the -norms of vorticity and the density gradient.
Each has a lower bound in terms of the inverse Rossby number,
, that turns out to be crucial to the argument. For convenience, the
are also scaled into a new set of variables . By
assuming the existence and uniqueness of solutions, conditional upper bounds
are found on the in terms of and the Reynolds number .
These upper bounds vary across bands in the phase plane.
The boundaries of these bands depend subtly upon , , and the
inverse Froude number . For example, solutions in the lower band
conditionally live in an absorbing ball in which the maximum value of
deviates from as a function of and
.Comment: 24 pages, 3 figures and 1 tabl
- …
