465 research outputs found

    Ab-initio study of several static and dynamic properties of liquid palladium and platinum

    Full text link
    We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data

    Dynamic properties of liquid Ni revisited

    Full text link
    Liquid Ni has previously been studied by different approaches such as molecular dynamics simulations and experimental techniques including inelastic neutron and X-ray scattering. Although some puzzling results, such as the shape of the sound dispersion curve for q ≤ 1.0 Å−1, have already been sorted out, there still persist some discrepancies, among different studies, for greater q-values. We have performed ab initio simulation calculations which show how those differences can be reconciled. Moreover, we have found that the transverse current spectral functions have some features which, so far, had previously been shown by high pressure liquid metals

    Demonstration of the effect of stirring on nucleation from experiments on the International Space Station using the ISS-EML facility

    Get PDF
    The effect of fluid flow on crystal nucleation in supercooled liquids is not well understood. The variable density and temperature gradients in the liquid make it difficult to study this under terrestrial gravity conditions. Nucleation experiments were therefore made in a microgravity environment using the Electromagnetic Levitation facility on the International Space Station on a bulk glass-forming Zr57Cu15.4Ni12.6Al10Nb5 (Vit106), as well as Cu50Zr50 and the quasicrystal-forming Ti39.5Zr39.5Ni21 liquids. The maximum supercooling temperatures for each alloy were measured as a function of controlled stirring by applying various combinations of radio frequency positioner and heater voltages to the water-cooled copper coils. The flow patterns were simulated from the known parameters for the coil and the levitated samples. The maximum nucleation temperatures increased systematically with increased fluid flow in the liquids for Vit106, but stayed nearly unchanged for the other two. These results are consistent with the predictions from the coupled-flux model for nucleation.Comment: 21 pages, 2 figure

    Elevational constraints on the composition and genomic attributes of microbial communities in Antarctic soils

    Get PDF
    Š The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dragone, N. B., Henley, J. B., Holland-Moritz, H., Diaz, M., Hogg, I. D., Lyons, W. B., Wall, D. H., Adams, B. J., & Fierer, N. Elevational constraints on the composition and genomic attributes of microbial communities in Antarctic soils. Msystems, 7(1), (2022): e01330-21, https://doi.org/10.1128/msystems.01330-21.The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined. We analyzed the prokaryotic communities in soil samples collected from across the Shackleton Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon sequencing, and shotgun metagenomic sequencing. We found that elevation was the dominant factor explaining differences in the structures of the soil prokaryotic communities, with the drier and saltier soils found at higher elevations harboring less diverse communities and unique assemblages of cooccurring taxa. The higher-elevation soil communities also had lower maximum potential growth rates (as inferred from metagenome-based estimates of codon usage bias) and an overrepresentation of genes associated with trace gas metabolism. Together, these results highlight the utility of assessing community shifts across pronounced environmental gradients to improve our understanding of the microbial diversity found in Antarctic soils and the strategies used by soil microbes to persist at the limits of habitability.Geospatial support for this work was provided by the Polar Geospatial Center under NSF-OPP awards 1043681 and 155969. This work was supported by grants from the U.S. National Science Foundation Office of Polar Programs (1341629, 1341629, 1341736, and 1637708 to B.J.A., N.F., W.B.L., and D.H.W.), with additional support provided to N.B.D. from the University of Colorado Department of Ecology and Evolutionary Biology

    Towards a Critical Race Methodology in Algorithmic Fairness

    Full text link
    We examine the way race and racial categories are adopted in algorithmic fairness frameworks. Current methodologies fail to adequately account for the socially constructed nature of race, instead adopting a conceptualization of race as a fixed attribute. Treating race as an attribute, rather than a structural, institutional, and relational phenomenon, can serve to minimize the structural aspects of algorithmic unfairness. In this work, we focus on the history of racial categories and turn to critical race theory and sociological work on race and ethnicity to ground conceptualizations of race for fairness research, drawing on lessons from public health, biomedical research, and social survey research. We argue that algorithmic fairness researchers need to take into account the multidimensionality of race, take seriously the processes of conceptualizing and operationalizing race, focus on social processes which produce racial inequality, and consider perspectives of those most affected by sociotechnical systems.Comment: Conference on Fairness, Accountability, and Transparency (FAT* '20), January 27-30, 2020, Barcelona, Spai

    Melt Viscosity of the Soft Magnetic Nanocrystalline Fe 72.5

    Full text link
    Temperature dependences of the kinematic viscosity of a multicomponent Fe72.5Cu1Nb2Mo1.5Si14B9 melt have been studied. A critical temperature is detected above which the activation energy of the melt’ viscous flow changes. Comparison of the temperature dependences of the kinematic viscosity of the melts prepared from the initial ingot and an amorphous ribbon shows that the melt viscosity essentially depends on the initial structural state of the alloy. In amorphous ribbon produced in the mode with overheating, and the melt is above the critical temperature, the enthalpy of crystallization grows; the following heat treatment results in an increase in magnetic permeability

    Mass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale

    Full text link
    Microfluidic droplet sorting enables the highâ throughput screening and selection of waterâ inâ oil microreactors at speeds and volumes unparalleled by traditional wellâ plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for highâ throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESIâ MS). Droplets are split, one portion is analyzed by ESIâ MS, and the second portion is sorted based on the MS result. Throughput of 0.7â samplesâ sâ 1 is achieved with 98â % accuracy using a selfâ correcting and adaptive sorting algorithm. We use the system to screen â 15â 000â samples in 6â h and demonstrate its utility by sorting 25â nL droplets containing transaminase expressed in vitro. Labelâ free ESIâ MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.A microfluidic system for sorting nanoliter droplets based on mass spectrometry is presented. Fully automated, labelâ free sorting at 0.7â samplesâ sâ 1 is achieved with 98â % accuracy. In vitro transcription and translation (ivTT) of a transaminase enzyme in ca.â 25â nL samples is demonstrated and samples are sorted on the basis of enzyme activity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/1/anie201913203.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/2/anie201913203-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/3/anie201913203_am.pd

    Mass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale

    Full text link
    Microfluidic droplet sorting enables the highâ throughput screening and selection of waterâ inâ oil microreactors at speeds and volumes unparalleled by traditional wellâ plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for highâ throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESIâ MS). Droplets are split, one portion is analyzed by ESIâ MS, and the second portion is sorted based on the MS result. Throughput of 0.7â samplesâ sâ 1 is achieved with 98â % accuracy using a selfâ correcting and adaptive sorting algorithm. We use the system to screen â 15â 000â samples in 6â h and demonstrate its utility by sorting 25â nL droplets containing transaminase expressed in vitro. Labelâ free ESIâ MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.Ein Mikrofluidiksystem zur Sortierung von NanolitertrÜpfchen basierend auf Massenspektrometrie erreicht eine vollautomatische markierungsfreie Sortierung bei 0.7 Probenâ sâ 1 mit 98â % Genauigkeit. Die Inâ vitroâ Transkription und â Translation (ivTT) eines Transaminaseâ Enzyms in Proben von etwa 25â nL wird demonstriert, und die Proben werden nach ihrer Enzymaktivität sortiert.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/1/ange201913203-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/2/ange201913203.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/3/ange201913203_am.pd
    • …
    corecore