1,003 research outputs found
On the peak in the far-infrared conductivity of strongly anisotropic cuprates
We investigate the far-infrared and submillimeter-wave conductivity of
electron-doped La_(2-x)Ce_xCuO_4 tilted 1 degree off from the ab-plane. The
effective conductivity measured for this tilt angle reveals an intensive peak
at finite frequency (\nu ~ 50 cm{-1}) due to a mixing of the in-plane and
out-of-plane responses. The peak disappears for the pure in-plane response and
transforms to the Drude-like contribution. Comparative analysis of the mixed
and the in-plane contributions allows to extract the c-axis conductivity which
shows a Josephson plasma resonance at 11.7 cm{-1} in the superconducting state.Comment: 4 pages, 4 figures include
Charge Ordering and Phase Competition in the Layered Perovskite Lasr2mn2o7
Charge-lattice fluctuations are observed in the layered perovskite manganite
LaSr2Mn2O7 by Raman spectroscopy as high as 340 K and with decreasing
temperature they become static and form a charge ordered (CO) phase below
TCO=210 K. In the static regime, superlattice reflections are observed through
neutron and x-ray diffraction with a propagation vector (h+1/4,k-1/4,l).
Crystallographic analysis of the CO state demonstrates that the degree of
charge and orbital ordering in this manganite is weaker than the charge
ordering in three dimensional perovskite manganites. A TN=170K a type-A
antiferromagnetism (AF) develops and competes with the charge ordering, that
eventually melts below T*=100K. High resolution diffraction measurements
suggest that that CO- and AF-states do not coincide within the same region in
the material but rather co-exist as separate phases. The transition to type-A
antiferromagnetism at lower temperatures is characterized by the competition
between these two phases.Comment: 9 pages, 6 figure
Charge transfer fluctuation, wave superconductivity, and the Raman phonon in the Cuprates: A detailed analysis
The Raman spectrum of the phonon in the superconducting cuprate
materials is investigated theoretically in detail in both the normal and
superconducting phases, and is contrasted with that of the phonon. A
mechanism involving the charge transfer fluctuation between the two oxygen ions
in the CuO plane coupled to the crystal field perpendicular to the plane is
discussed and the resulting electron-phonon coupling is evaluated. Depending on
the symmetry of the phonon the weight of different parts of the Fermi surface
in the coupling is different. This provides the opportunity to obtain
information on the superconducting gap function at certain parts of the Fermi
surface. The lineshape of the phonon is then analyzed in detail both in the
normal and superconducting states. The Fano lineshape is calculated in the
normal state and the change of the linewidth with temperature below T is
investigated for a pairing symmetry. Excellent agreement is
obtained for the phonon lineshape in YBaCuO. These
experiments, however, can not distinguish between and a
highly anisotropic -wave pairing.Comment: Revtex, 21 pages + 4 postscript figures appended, tp
Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films
In Raman spectra of cuprate superconductors the gap shows up both directly,
via a redistribution of the electronic background, the so-called "2Delta
peaks", and indirectly, e.g. via the renormalization of phononic excitations.
We use a model that allows us to study the redistribution and the related
phonon self-energy effects simultaneously. We apply this model to the B_1g
phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution
enables us to investigate under- and overdoped samples. While various
self-energy effects can be explained by the strength and energy of the 2\Delta
peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure
Raman light scattering study and microstructural analysis of epitaxial films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4}
We present a detailed temperature-dependent Raman light scattering study of
optical phonons in molecular-beam-epitaxy-grown films of the electron-doped
superconductor La_{2-x}Ce_{x}CuO_{4} close to optimal doping (x ~ 0.08, T_c =
29 K and x ~ 0.1, T_c = 27 K). The main focus of this work is a detailed
characterization and microstructural analysis of the films. Based on
micro-Raman spectroscopy in combination with x-ray diffraction,
energy-dispersive x-ray analysis, and scanning electron microscopy, some of the
observed phonon modes can be attributed to micron-sized inclusions of Cu_{2}O.
In the slightly underdoped film (x ~ 0.08), both the Cu_{2}O modes and others
that can be assigned to the La_{2-x}Ce_{x}CuO_{4} matrix show pronounced
softening and narrowing upon cooling below T ~ T_c. Based on control
measurements on commercial Cu_{2}O powders and on a comparison to prior Raman
scattering studies of other high-temperature superconductors, we speculate that
proximity effects at La_{2-x}Ce_{x}CuO_{4}/Cu_{2}O interfaces may be
responsible for these anomalies. Experiments on the slightly overdoped
La_{2-x}Ce_{x}CuO_{4} film (x ~ 0.1) did not reveal comparable phonon
anomalies.Comment: 7 pages, 8 figure
Theory for Electron-Doped Cuprate Superconductors: d-wave symmetry order parameter
Using as a model the Hubbard Hamiltonian we determine various basic
properties of electron-doped cuprate superconductors like
and for a
spin-fluctuation-induced pairing mechanism. Most importantly we find a narrow
range of superconductivity and like for hole-doped cuprates -
symmetry for the superconducting order parameter. The superconducting
transition temperatures for various electron doping concentrations
are calculated to be much smaller than for hole-doped cuprates due to the
different Fermi surface and a flat band well below the Fermi level. Lattice
disorder may sensitively distort the symmetry via
electron-phonon interaction
Small and large polarons in nickelates, manganites, and cuprates
By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO),
Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and
Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of
polarons in this cuprate family. While in LSNO and SLMO small polarons localize
into ordered structures below a transition temperature, in those cuprates the
polarons appear to be large, and at low T their binding energy decreases. This
reflects into an increase of the polaron radius, which may trigger coherent
transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of
Superconductivity - Proc. "Stripes 1996" - Roma Dec 199
Polaronic optical absorption in electron-doped and hole-doped cuprates
Polaronic features similar to those previously observed in the photoinduced
spectra of cuprates have been detected in the reflectivity spectra of
chemically doped parent compounds of high-critical-temperature superconductors,
both -type and -type. In NdCuO these features, whose
intensities depend both on doping and temperature, include local vibrational
modes in the far infrared and a broad band centered at 1000 cm.
The latter band is produced by the overtones of two (or three) local modes and
is well described in terms of a small-polaron model, with a binding energy of
about 500 cm. Most of the above infrared features are shown to survive
in the metallic phase of NdCeCu0, BiSrCuO, and
YBaCuO, where they appear as extra-Drude peaks. The occurrence
of polarons is attributed to local modes strongly coupled to carriers, as shown
by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be
faxed upon reques
Temperature dependence of the EPR linewidth of Yb3+ - ions in Y0.99Yb0.01Ba2Cu3OX compounds: Evidence for an anomaly near TC
Electron paramagnetic resonance experiments on doped Yb3+ ions in YBaCuO
compounds with different oxygen contents have been made. We have observed the
strong temperature dependence of the EPR linewidth in the all investigated
samples caused by the Raman processes of spin-lattice relaxation. The
spin-lattice relaxation rate anomaly revealed near TC in the superconducting
species can be assigned to the phonon density spectrum changesComment: 10 pages, 4 figures Renewed versio
Infrared optical properties of Pr2CuO4
The ab-plane reflectance of a Pr2CuO4 single crystal has been measured over a
wide frequency range at a variety of temperatures, and the optical properties
determined from a Kramers-Kronig analysis. Above ~ 250 K, the low frequency
conductivity increases quickly with temperature; the resistivity follows the
form e^(E_a/k_BT), where E_a ~ 0.17 eV is much less than the inferred optical
gap of ~ 1.2 eV. Transport measurements show that at low temperature the
resistivity deviates from activated behavior and follows the form
e^[(T_0/T)^1/4], indicating that the dc transport in this material is due to
variable-range hopping between localized states in the gap. The four
infrared-active Eu modes dominate the infrared optical properties. Below ~ 200
K, a striking new feature appears near the low-frequency Eu mode, and there is
additional new fine structure at high frequency. A normal coordinate analysis
has been performed and the detailed nature of the zone-center vibrations
determined. Only the low-frequency Eu mode has a significant Pr-Cu interaction.
Several possible mechanisms related to the antiferromagnetism in this material
are proposed to explain the sudden appearance of this and other new spectral
features at low temperature.Comment: 11 pages, 7 embedded EPS figures, REVTeX
- …
