5,226 research outputs found

    Comparison of heuristic approaches for the multiple depot vehicle scheduling problem

    Get PDF
    Given a set of timetabled tasks, the multi-depot vehicle scheduling problemis a well-known problem that consists of determining least-cost schedulesfor vehicles assigned to several depots such that each task is accomplishedexactly once by a vehicle. In this paper, we propose to compare theperformance of five different heuristic approaches for this problem,namely, a heuristic \\mip solver, a Lagrangian heuristic, a columngeneration heuristic, a large neighborhood search heuristic using columngeneration for neighborhood evaluation, and a tabu search heuristic. Thefirst three methods are adaptations of existing methods, while the last twoare novel approaches for this problem. Computational results on randomlygenerated instances show that the column generation heuristic performs thebest when enough computational time is available and stability is required,while the large neighborhood search method is the best alternative whenlooking for a compromise between computational time and solution quality.tabu search;column generation;vehicle scheduling;heuristics;Lagrangian heuristic;large neighborhood search;multiple depot

    Non-analytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable 1d-model for evaporation

    Full text link
    We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated NN-particle system, the microcanonical TDFs exhibit (N-1) singular (non-analytic) microscopic phase transitions of the formal order N/2, separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros (DOZ) of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.Comment: version accepted for publication in PRE, minor additions in the text, references adde

    Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses

    Full text link
    We show that a linear molecule subjected to a short specific elliptically polarized laser field yields postpulse revivals exhibiting alignment alternatively located along the orthogonal axis and the major axis of the ellipse. The effect is experimentally demonstrated by measuring the optical Kerr effect along two different axes. The conditions ensuring an optimal field-free alternation of high alignments along both directions are derived.Comment: 5 pages, 4 color figure

    Condensation temperature of interacting Bose gases with and without disorder

    Full text link
    The momentum-shell renormalization group (RG) is used to study the condensation of interacting Bose gases without and with disorder. First of all, for the homogeneous disorder-free Bose gas the interaction-induced shifts in the critical temperature and chemical potential are determined up to second order in the scattering length. The approach does not make use of dimensional reduction and is thus independent of previous derivations. Secondly, the RG is used together with the replica method to study the interacting Bose gas with delta-correlated disorder. The flow equations are derived and found to reduce, in the high-temperature limit, to the RG equations of the classical Landau-Ginzburg model with random-exchange defects. The random fixed point is used to calculate the condensation temperature under the combined influence of particle interactions and disorder.Comment: 7 pages, 2 figure

    Neural Relax

    Full text link
    We present an algorithm for data preprocessing of an associative memory inspired to an electrostatic problem that turns out to have intimate relations with information maximization

    p>2 spin glasses with first order ferromagnetic transitions

    Full text link
    We consider an infinite-range spherical p-spin glass model with an additional r-spin ferromagnetic interaction, both statically using a replica analysis and dynamically via a generating functional method. For r>2 we find that there are first order transitions to ferromagnetic phases. For r<p there are two ferromagnetic phases, one non-glassy replica symmetric and one exhibiting glassy one-step replica symmetry breaking and aging, whereas for r>=p only the replica symmetric phase exists.Comment: AMSLaTeX, 13 pages, 23 EPS figures ; one figure correcte

    Rigidity of equilibrium states and unique quasi-ergodicity for horocyclic foliations

    Full text link
    In this paper we prove that for topologically mixing Anosov flows their equilibrium states corresponding to H\"older potentials satisfy a strong rigidity property: they are determined only by their disintegrations on (strong) stable or unstable leaves. As a consequence we deduce: the corresponding horocyclic foliations of such systems are uniquely quasi-ergodic, provided that the corresponding Jacobian is H\"older, without any restriction on the dimension of the invariant distributions. This generalizes a classical result due to Babillott and Ledrappier for the geodesic flow of hyperbolic manifolds. We rely on symbolic dynamics and on recent methods developed by the authors.Comment: 11 page

    Synchronization from Disordered Driving Forces in Arrays of Coupled Oscillators

    Full text link
    The effects of disorder in external forces on the dynamical behavior of coupled nonlinear oscillator networks are studied. When driven synchronously, i.e., all driving forces have the same phase, the networks display chaotic dynamics. We show that random phases in the driving forces result in regular, periodic network behavior. Intermediate phase disorder can produce network synchrony. Specifically, there is an optimal amount of phase disorder, which can induce the highest level of synchrony. These results demonstrate that the spatiotemporal structure of external influences can control chaos and lead to synchronization in nonlinear systems.Comment: 4 pages, 4 figure
    • …
    corecore