292 research outputs found

    Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy

    Get PDF
    We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 mu M). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (445 mu M) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater

    A Mass Bound for Spherically Symmetric Black Hole Spacetimes

    Get PDF
    Requiring that the matter fields are subject to the dominant energy condition, we establish the lower bound (4π)−1κA(4\pi)^{-1} \kappa {\cal A} for the total mass MM of a static, spherically symmetric black hole spacetime. (A{\cal A} and κ\kappa denote the area and the surface gravity of the horizon, respectively.) Together with the fact that the Komar integral provides a simple relation between M−(4π)−1κAM - (4\pi)^{-1} \kappa A and the strong energy condition, this enables us to prove that the Schwarzschild metric represents the only static, spherically symmetric black hole solution of a selfgravitating matter model satisfying the dominant, but violating the strong energy condition for the timelike Killing field KK at every point, that is, R(K,K)≤0R(K,K) \leq 0. Applying this result to scalar fields, we recover the fact that the only black hole configuration of the spherically symmetric Einstein-Higgs model with arbitrary non-negative potential is the Schwarzschild spacetime with constant Higgs field. In the presence of electromagnetic fields, we also derive a stronger bound for the total mass, involving the electromagnetic potentials and charges. Again, this estimate provides a simple tool to prove a ``no-hair'' theorem for matter fields violating the strong energy condition.Comment: 16 pages, LATEX, no figure

    Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors

    Full text link
    We consider the effect of the Rashba spin-orbital interaction and space charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction where the spin current is severely affected by the doping, band structure and charge screening in the semiconductor. In diffusion region, if the the resistance of the tunneling barriers is comparable to the semiconductor resistance, the magnetoresistance of this junction can be greatly enhanced under appropriate doping by the co-ordination between the Rashba effect and screened Coulomb interaction in the nonequilibrium transport processes within Hartree approximation.Comment: 4 pages, 3 figure

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Inductively coupled plasma mass spectrometric detection for multielement flow injection analysis and elemental speciation by reversed-phase liquid chromatography

    Get PDF
    The feasibility of using an inductively coupled plasma mass spectrometer as a muitieiement detector for flow injection analysis (FIA) and ion-pair reversed-phase liquid chromatography was investigated. Sample introduction was by uitrasonk nebulization with aerosol desolvation. Absolute detecton limits for FIA ranged from 0.01 to 0.1 ng for most elements using 10-pL injections. Over 30 elements were surveyed for their response to both anionic and cationic ion pairing reagents. The separation and selective detection of various As and Se species were demonstrated, yielding detection limits near 0.1 ng (as element) for ail six species present. Determination of 15 elements in a single injection with multiple ion monitoring produced shniiar detection limits. Isotope ratios were measured with sufficient precision (better than 2%) and accuracy (about 1 %) on eluting peaks of Cd and Pb to demonstrate that liquid chromatographyhductively coupled plasma mass spectrometry should make speciation studies with stable tracer isotopes feasible

    Communications Biophysics

    Get PDF
    Contains reports on four research projects.National Institutes of Health (Grant 5 P01 NS13126-02)National Institutes of Health (Grant 5 K04 NS00113-03)National Institutes of Health (Grant 2 ROI NS11153-02A1)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 RO1 NS10916-03)National Institutes of Health (Fellowship 1 F32 NS05327)National Institutes of Health (Grant 5 ROI NS12846-02)National Institutes of Health (Fellowship 1 F32 NS05266)Edith E. Sturgis FoundationNational Institutes of Health (Grant 1 R01 NS11680-01)National Institutes of Health (Grant 2 RO1 NS11080-04)National Institutes of Health (Grant 5 T32 GIM107301-03)National Institutes of Health (Grant 5 TOI GM01555-10

    Communications Biophysics

    Get PDF
    Contains reports on nine research projects split into four sections.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 5 KO4 NS00113)National Institutes of Health (Training Grant 5 T32 NS07047)National Institutes of Health (Training Grant 1 T32 NS07099)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 ROI NS10916)National Institutes of Health (Grant 5 RO1 NS12846)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 1 RO1 NS14092)Edith E. Sturgis FoundationHealth Sciences FundNational Institutes of Health (Grant 2 R01 NS11680)National Institutes of Health (Fellowship 5 F32 NS05327)National Institutes of Health (Grant 2 ROI NS11080)National Institutes of Health (Training Grant 5 T32 GM07301
    • …
    corecore