292 research outputs found
Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy
We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 mu M). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (445 mu M) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater
A Mass Bound for Spherically Symmetric Black Hole Spacetimes
Requiring that the matter fields are subject to the dominant energy
condition, we establish the lower bound for the
total mass of a static, spherically symmetric black hole spacetime. ( and denote the area and the surface gravity of the horizon,
respectively.) Together with the fact that the Komar integral provides a simple
relation between and the strong energy condition,
this enables us to prove that the Schwarzschild metric represents the only
static, spherically symmetric black hole solution of a selfgravitating matter
model satisfying the dominant, but violating the strong energy condition for
the timelike Killing field at every point, that is, .
Applying this result to scalar fields, we recover the fact that the only black
hole configuration of the spherically symmetric Einstein-Higgs model with
arbitrary non-negative potential is the Schwarzschild spacetime with constant
Higgs field. In the presence of electromagnetic fields, we also derive a
stronger bound for the total mass, involving the electromagnetic potentials and
charges. Again, this estimate provides a simple tool to prove a ``no-hair''
theorem for matter fields violating the strong energy condition.Comment: 16 pages, LATEX, no figure
Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors
We consider the effect of the Rashba spin-orbital interaction and space
charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction
where the spin current is severely affected by the doping, band structure and
charge screening in the semiconductor. In diffusion region, if the the
resistance of the tunneling barriers is comparable to the semiconductor
resistance, the magnetoresistance of this junction can be greatly enhanced
under appropriate doping by the co-ordination between the Rashba effect and
screened Coulomb interaction in the nonequilibrium transport processes within
Hartree approximation.Comment: 4 pages, 3 figure
Recommended from our members
Reasons for poor uptake of TB preventive therapy in South Africa
BACKGROUND: South Africa has one the highest TB and HIV burdens globally. TB preventive therapy (TPT) reduces the risk of TB disease and TB-related mortality in adults and children living with HIV and is indicated for use in TB-exposed HIV-negative individuals and children. TPT implementation in South Africa remains suboptimal.
METHODS: We conducted a pragmatic review of TPT implementation using multiple data sources, including informant interviews (n = 134), semi-structured observations (n = 93) and TB patient folder reviews in 31 health facilities purposively selected across three high TB burden provinces. We used case descriptive analysis and thematic coding to identify barriers and facilitators to TPT implementation.
RESULTS: TPT programme implementation was suboptimal, with inadequate monitoring even in health districts with well-functioning TB services. Health workers reported scepticism about TPT effectiveness, deprioritised TPT in practice and expressed divergent opinions about the cadres of staff responsible for implementation. Service- and facility-level barriers included ineffective contact tracing, resource shortages, lack of standardised reporting mechanisms and insufficient patient education on TPT. Patient-level barriers included socio-economic factors.
CONCLUSIONS: Improving TPT implementation will require radically simplified and more feasible systems and training for all cadres of health workers. Partnership with communities to stimulate demand driven service uptake can potentially facilitate implementation
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
Recommended from our members
TB preventive therapy preferences among children and adolescents
BACKGROUND: TB preventive therapy (TPT) is critical for ending TB, yet implementation remains poor. With new global guidelines expanding TPT eligibility and regimens, we aimed to understand TPT preferences among children, adolescents and caregivers.
METHODS: We undertook a discrete choice experiment among 131 children, 170 adolescents and 173 caregivers, and conducted 17 in-depth interviews in 25 clinics in Cape Town, South Africa. The design included attributes for location, waiting time, treatment duration, dosing frequency, formulation/size, side effects, packaging and taste. Mixed-effects logistic regression models were used for analysis.
RESULTS: Among children and caregivers, the number and size of pills, taste and side effects were important drivers of preferences. Among adolescents and caregivers, clinic waiting times and side effects were significant drivers of preferences. Adolescents expressed concerns about being stigmatised, and preferred services from local clinics to services delivered in the community. Dosing frequency and treatment duration were only significant drivers of choice among adolescents, and only if linked to fewer clinic visits.
CONCLUSIONS: Introducing shorter TPT regimens in isolation without consideration of preferences and health services may not have the desired effect on uptake and completion. Developing TPT delivery models and formulations that align with preferences must be prioritised
Inductively coupled plasma mass spectrometric detection for multielement flow injection analysis and elemental speciation by reversed-phase liquid chromatography
The feasibility of using an inductively coupled plasma mass spectrometer as a muitieiement detector for flow injection analysis (FIA) and ion-pair reversed-phase liquid chromatography was investigated. Sample introduction was by uitrasonk nebulization with aerosol desolvation. Absolute detecton limits for FIA ranged from 0.01 to 0.1 ng for most elements using 10-pL injections. Over 30 elements were surveyed for their response to both anionic and cationic ion pairing reagents. The separation and selective detection of various As and Se species were demonstrated, yielding detection limits near 0.1 ng (as element) for ail six species present. Determination of 15 elements in a single injection with multiple ion monitoring produced shniiar detection limits. Isotope ratios were measured with sufficient precision (better than 2%) and accuracy (about 1 %) on eluting peaks of Cd and Pb to demonstrate that liquid chromatographyhductively coupled plasma mass spectrometry should make speciation studies with stable tracer isotopes feasible
Communications Biophysics
Contains reports on four research projects.National Institutes of Health (Grant 5 P01 NS13126-02)National Institutes of Health (Grant 5 K04 NS00113-03)National Institutes of Health (Grant 2 ROI NS11153-02A1)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 RO1 NS10916-03)National Institutes of Health (Fellowship 1 F32 NS05327)National Institutes of Health (Grant 5 ROI NS12846-02)National Institutes of Health (Fellowship 1 F32 NS05266)Edith E. Sturgis FoundationNational Institutes of Health (Grant 1 R01 NS11680-01)National Institutes of Health (Grant 2 RO1 NS11080-04)National Institutes of Health (Grant 5 T32 GIM107301-03)National Institutes of Health (Grant 5 TOI GM01555-10
Communications Biophysics
Contains reports on nine research projects split into four sections.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 5 KO4 NS00113)National Institutes of Health (Training Grant 5 T32 NS07047)National Institutes of Health (Training Grant 1 T32 NS07099)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 ROI NS10916)National Institutes of Health (Grant 5 RO1 NS12846)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 1 RO1 NS14092)Edith E. Sturgis FoundationHealth Sciences FundNational Institutes of Health (Grant 2 R01 NS11680)National Institutes of Health (Fellowship 5 F32 NS05327)National Institutes of Health (Grant 2 ROI NS11080)National Institutes of Health (Training Grant 5 T32 GM07301
- …