1,612 research outputs found

    Selective Hydrogenation and Transfer Hydrogenation for Post-Functional Synthesis of Trifluoromethylphenyl Diazirine Derivatives for Photoaffinity Labeling

    Get PDF
    Elucidation of protein functions on the basis of structure–activity relationships can reveal the mechanisms of homeostasis functions in life and is one of the greatest interests of scientists. In the human body, many proteins are activated and/or inactivated by ligands to maintain homeostasis. Understanding the mechanism of molecular interactions between small bioactive ligands and proteins is an important step in rational drug design and discovery. ! Photoaffinity labeling, which is one of the most familiar approaches for chemical biology analysis, was initiated using diazocarbonyl derivatives in 1962 (Singh et al., 1962). Many researchers have subsequently tried to establish alternative approaches for the direct identification of target proteins for the bioactive small ligands. These approaches are based on the affinity between the ligand and the target protein (Figure 1). Several reviews are published for the recent applications of photoaffinity labeling (Tomohiro et al., 2005; Hashimoto & Hatanaka, 2008). To archive photoaffinity labeling, researchers have to prepare photoaffinity labeling ligands. The native ligands must be modified by photoreactive compounds (photophores) by organic synthesi

    Measurement of the mass of the τ lepton

    Get PDF
    The mass of the τ lepton has been measured at the Beijing Electron-Positron Collider using the Beijing Spectrometer. A search near threshold for e^+e^-→τ^+τ^- was performed. Candidate events were identified by requiring that one τ decay via τ→eνν¯, and the other via τ→μνν¯. The mass value, obtained from a fit to the energy dependence of the τ^+τ^- cross section, is m_τ=1776.9_(-0.5)^(+0.4)±0.2 MeV

    Radiative and Semileptonic B Decays Involving Higher K-Resonances in the Final States

    Full text link
    We study the radiative and semileptonic B decays involving a spin-JJ resonant KJ()K_J^{(*)} with parity (1)J(-1)^J for KJK_J^* and (1)J+1(-1)^{J+1} for KJK_J in the final state. Using the large energy effective theory (LEET) techniques, we formulate BKJ()B \to K_J^{(*)} transition form factors in the large recoil region in terms of two independent LEET functions ζKJ()\zeta_\perp^{K_J^{(*)}} and ζKJ()\zeta_\parallel^{K_J^{(*)}}, the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, ζ,KJ()\zeta_{\perp,\parallel}^{K_J^{(*)}} exhibit a dipole dependence in q2q^2. We predict the decay rates for BKJ()γB \to K_J^{(*)} \gamma, BKJ()+B \to K_J^{(*)} \ell^+ \ell^- and BKJ()ννˉB \to K_J^{(*)}\nu \bar{\nu}. The branching fractions for these decays with higher KK-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of ζ,KJ()\zeta^{K_J^{(*)}}_{\perp,\parallel}. Furthermore, if the spin of KJ()K_J^{(*)} becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch-Gordan coefficients defined by the polarization tensors of the KJ()K_J^{(*)}. We also calculate the forward backward asymmetry of the BKJ()+B \to K_J^{(*)} \ell^+ \ell^- decay, for which the zero is highly insensitive to the KK-resonances in the LEET parametrization.Comment: 27 pages, 4 figures, 7 tables;contents and figures corrected, title and references revise

    Extranatural Inflation

    Get PDF
    We present a new model of inflation in which the inflaton is the extra component of a gauge field in a 5d theory compactified on a circle. The chief merit of this model is that the potential comes only from non-local effects so that its flatness is not spoiled by higher dimensional operators or quantum gravity corrections. The model predicts a red spectrum (n ~ 0.96) and a significant production of gravitational waves (r ~ 0.11). We also comment on the relevance of this idea to quintessence.Comment: 4 pages. Minor corrections and references added. Accepted for PR

    A model of CP Violation from Extra Dimension

    Full text link
    We construct a realistic model of CP violation in which CP is broken in the process of dimensional reduction and orbifold compactification from a five dimensional theories with SU(3)×SU(3)×SU(3)SU(3)\times SU(3) \times SU(3) gauge symmetry. CP violation is a result of the Hosotani type gauge configuration in the higher dimension.Comment: 5 page
    corecore