37 research outputs found

    A Comparative Analysis Shows Morphofunctional Differences between the Rat and Mouse Melanin-Concentrating Hormone Systems

    Get PDF
    Sub-populations of neurons producing melanin-concentrating hormone (MCH) are characterized by distinct projection patterns, birthdates and CART/NK3 expression in rat. Evidence for such sub-populations has not been reported in other species. However, given that genetically engineered mouse lines are now commonly used as experimental models, a better characterization of the anatomy and morphofunctionnal organization of MCH system in this species is then necessary. Combining multiple immunohistochemistry experiments with in situ hybridization, tract tracing or BrdU injections, evidence supporting the hypothesis that rat and mouse MCH systems are not identical was obtained: sub-populations of MCH neurons also exist in mouse, but their relative abundance is different. Furthermore, divergences in the distribution of MCH axons were observed, in particular in the ventromedial hypothalamus. These differences suggest that rat and mouse MCH neurons are differentially involved in anatomical networks that control feeding and the sleep/wake cycle

    Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation.

    Get PDF
    RATIONALE: Selective rapid eye movement sleep (REMS) deprivation using the platform-on-water ("flower pot") method causes sleep rebound with increased REMS, decreased REMS latency, and activation of the melanin-concentrating hormone (MCH) expressing neurons in the hypothalamus. MCH is implicated in the pathomechanism of depression regarding its influence on mood, feeding behavior, and REMS. OBJECTIVES: We investigated the effects of the most selective serotonin reuptake inhibitor escitalopram on sleep rebound following REMS deprivation and, in parallel, on the activation of MCH-containing neurons. METHODS: Escitalopram or vehicle (10 mg/kg, intraperitoneally) was administered to REMS-deprived (72 h) or home cage male Wistar rats. During the 3-h-long "rebound sleep", electroencephalography was recorded, followed by an MCH/Fos double immunohistochemistry. RESULTS: During REMS rebound, the time spent in REMS and the number of MCH/Fos double-labeled neurons in the lateral hypothalamus increased markedly, and REMS latency showed a significant decrease. All these effects of REMS deprivation were significantly attenuated by escitalopram treatment. Besides the REMS-suppressing effects, escitalopram caused an increase in amount of and decrease in latency of slow wave sleep during the rebound. CONCLUSIONS: These results show that despite the high REMS pressure caused by REMS deprivation procedure, escitalopram has the ability to suppress REMS rebound, as well as to diminish the activation of MCH-containing neurons, in parallel. Escitalopram caused a shift from REMS to slow wave sleep during the rebound. Furthermore, these data point to the potential connection between the serotonergic system and MCH in sleep regulation, which can be relevant in depression and in other mood disorders

    A Very Large Number of GABAergic Neurons Are Activated in the Tuberal Hypothalamus during Paradoxical (REM) Sleep Hypersomnia

    Get PDF
    We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67 in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis

    Establishment in the Bordeaux Leather Trades

    No full text

    Untersuchungen zur Lipasebestimmung bei Tuberkulose

    No full text

    Inhibition of Mitogen-Activated Protein Kinase Erk1/2 Promotes Protein Degradation of ATP Binding Cassette Transporters A1 and G1 in CHO and in HuH7 cells.

    Get PDF
    Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARΞ±) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARΞ±-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARΞ±- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters

    Extracellular Matrix Turnover and Inflammatory Markers Independently Predict Functional Status and Outcome in Chronic Heart Failure

    No full text
    Background Inflammatory pathways may promote extracellular matrix (ECM) remodeling and chronic heart failure (CHF) progression. The relationship between markers of inflammation and of ECM remodeling, and their influence on functional status and outcomes has not been examined in a large cohort of CHF patients. Methods and Results We measured baseline blood serum collagen (amino-terminal propeptide of collagen III [PIIINP], metalloproteinase 1 [MMP-1], tissue inhibitor of metalloproteinase 1 [TIMP-1]), and inflammatory (high-sensitivity C-reactive protein [(hsCRP], interleukin [IL]-18, IL-10) markers in 1009 patients enrolled in the Research into Etanercept Cytokine Antagonism in Ventricular Dysfunction (RECOVER) trial. A positive correlation was detected between the 2 classes of markers (PIIINP to IL-18, MMP-1 and TIMP-1 to CRP, TIMP-1 to IL-18, MMP-1 to IL-10). In the adjusted multivariable model including all biomarkers, only PIIINP (P = .03) and MMP-1 (P = .048) were independent predictors of 6-minute walk test (6-MWT), whereas in another model including only inflammatory biomarkers, IL-18 was an independent predictor. PIIINP (P = .001) was the only biomarker independently associated with death and CHF hospitalization. Conclusions The independent associations of PIIINP and MMP-1 with 6-MWT and PIIINP with CHF morbi-mortality suggest that excessive ECM turnover may be associated with functional capacity deterioration and poor outcome
    corecore