4,523 research outputs found

    Universal condition for critical percolation thresholds of kagome-like lattices

    Full text link
    Lattices that can be represented in a kagome-like form are shown to satisfy a universal percolation criticality condition, expressed as a relation between P_3, the probability that all three vertices in the triangle connect, and P_0, the probability that none connect. A linear approximation for P_3(P_0) is derived and appears to provide a rigorous upper bound for critical thresholds. A numerically determined relation for P_3(P_0) gives thresholds for the kagome, site-bond honeycomb, (3-12^2), and "stack-of-triangle" lattices that compare favorably with numerical results.Comment: Several new figures and small change

    All-optical steering of light via spatial Bloch oscillations in a gas of three-level atoms

    Full text link
    A standing-wave control field applied to a three-level atomic medium in a planar hollow-core photonic crystal waveguide creates periodic variations of linear and nonlinear refractive indexes of the medium. This property can be used for efficient steering of light. In this work we study, both analytically and numerically, the dynamics of probe optical beams in such structures. By properly designing the spatial dependence of the nonlinearity it is possible to induce long-living Bloch oscillations of spatial gap solitons, thus providing desirable change in direction of the beam propagation without inducing appreciable diffraction. Due to the significant enhancement of the nonlinearity, such self-focusing of the probe beam can be reached at extremely weak light intensities.Comment: 8 pages, 4 figure

    Non-Markovian coherence dynamics of driven spin boson model: damped quantum beat or large amplitude coherence oscillation

    Full text link
    The dynamics of driven spin boson model is studied analytically by means of the perturbation approach based on a unitary transformation. We gave the analytical expression for the population difference and coherence of the two level system. The results show that in the weak driven case, the population difference present damped coherent oscillation (single or double frequency) and the frequencies depend on the initial state. The coherence exhibit damped oscillation with Rabi frequency. When driven field is strong enough, the population difference exhibit undamped large-amplitude coherent oscillation. The results easily return to the two extreme cases without dissipation or without periodic driven.Comment: 15 pages,5 figure

    Non-Markovian disentanglement dynamics of two-qubit system

    Full text link
    We investigated the disentanglement dynamics of two-qubit system in Non-Markovian approach. We showed that only the couple strength with the environment near to or less than fine-structure constant 1/137, entanglement appear exponential decay for a certain class of two-qubit entangled state. While the coupling between qubit and the environment is much larger, system always appears the sudden-death of entanglement even in the vacuum environment.Comment: 17 pages, 3 figure

    Compressing Inertial Motion Data in Wireless Sensing Systems – An Initial Experiment

    Get PDF
    The use of wireless inertial motion sensors, such as accelerometers, for supporting medical care and sport’s training, has been under investigation in recent years. As the number of sensors (or their sampling rates) increases, compressing data at source(s) (i.e. at the sensors), i.e. reducing the quantity of data that needs to be transmitted between the on-body sensors and the remote repository, would be essential especially in a bandwidth-limited wireless environment. This paper presents a set of compression experiment results on a set of inertial motion data collected during running exercises. As a starting point, we selected a set of common compression algorithms to experiment with. Our results show that, conventional lossy compression algorithms would achieve a desirable compression ratio with an acceptable time delay. The results also show that the quality of the decompressed data is within acceptable range

    On the performance of two protocols: SARG04 and BB84

    Full text link
    We compare the performance of BB84 and SARG04, the later of which was proposed by V. Scarani et al., in Phys. Rev. Lett. 92, 057901 (2004). Specifically, in this paper, we investigate SARG04 with two-way classical communications and SARG04 with decoy states. In the first part of the paper, we show that SARG04 with two-way communications can tolerate a higher bit error rate (19.4% for a one-photon source and 6.56% for a two-photon source) than SARG04 with one-way communications (10.95% for a one-photon source and 2.71% for a two-photon source). Also, the upper bounds on the bit error rate for SARG04 with two-way communications are computed in a closed form by considering an individual attack based on a general measurement. In the second part of the paper, we propose employing the idea of decoy states in SARG04 to obtain unconditional security even when realistic devices are used. We compare the performance of SARG04 with decoy states and BB84 with decoy states. We find that the optimal mean-photon number for SARG04 is higher than that of BB84 when the bit error rate is small. Also, we observe that SARG04 does not achieve a longer secure distance and a higher key generation rate than BB84, assuming a typical experimental parameter set.Comment: 48 pages, 10 figures, 1 column, changed Figs. 7 and

    Inertial coalescence of droplets on a partially wetting substrate

    Get PDF
    We consider the growth rate of the height of the connecting bridge in rapid surface-tension-driven coalescence of two identical droplets attached on a partially wetting substrate. For a wide range of contact angle values, the height of the bridge grows with time following a power law with a universal exponent of 2/3, up to a threshold time, beyond which a 1/2 exponent results, that is known for coalescence of freely-suspended droplets. In a narrow range of contact angle values close to 90°, this threshold time rapidly vanishes and a 1/2 exponent results for a 90° contact angle. The argument is confirmed by three-dimensional numerical simulations based on a diffuse interface method with adaptive mesh refinement and a volume-of-fluid method
    • …
    corecore