2,967 research outputs found

    Complementary algorithms for graphs and percolation

    Full text link
    A pair of complementary algorithms are presented. One of the pair is a fast method for connecting graphs with an edge. The other is a fast method for removing edges from a graph. Both algorithms employ the same tree based graph representation and so, in concert, can arbitrarily modify any graph. Since the clusters of a percolation model may be described as simple connected graphs, an efficient Monte Carlo scheme can be constructed that uses the algorithms to sweep the occupation probability back and forth between two turning points. This approach concentrates computational sampling time within a region of interest. A high precision value of pc = 0.59274603(9) was thus obtained, by Mersenne twister, for the two dimensional square site percolation threshold.Comment: 5 pages, 3 figures, poster version presented at statphys23 (2007

    Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density

    Full text link
    The classical monomer-dimer model in two-dimensional lattices has been shown to belong to the \emph{``#P-complete''} class, which indicates the problem is computationally ``intractable''. We use exact computational method to investigate the number of ways to arrange dimers on m×nm \times n two-dimensional rectangular lattice strips with fixed dimer density ρ\rho. For any dimer density 0<ρ<10 < \rho < 1, we find a logarithmic correction term in the finite-size correction of the free energy per lattice site. The coefficient of the logarithmic correction term is exactly -1/2. This logarithmic correction term is explained by the newly developed asymptotic theory of Pemantle and Wilson. The sequence of the free energy of lattice strips with cylinder boundary condition converges so fast that very accurate free energy f2(ρ)f_2(\rho) for large lattices can be obtained. For example, for a half-filled lattice, f2(1/2)=0.633195588930f_2(1/2) = 0.633195588930, while f2(1/4)=0.4413453753046f_2(1/4) = 0.4413453753046 and f2(3/4)=0.64039026f_2(3/4) = 0.64039026. For ρ<0.65\rho < 0.65, f2(ρ)f_2(\rho) is accurate at least to 10 decimal digits. The function f2(ρ)f_2(\rho) reaches the maximum value f2(ρ)=0.662798972834f_2(\rho^*) = 0.662798972834 at ρ=0.6381231\rho^* = 0.6381231, with 11 correct digits. This is also the \md constant for two-dimensional rectangular lattices. The asymptotic expressions of free energy near close packing are investigated for finite and infinite lattice widths. For lattices with finite width, dependence on the parity of the lattice width is found. For infinite lattices, the data support the functional form obtained previously through series expansions.Comment: 15 pages, 5 figures, 5 table

    New Lower Bounds on the Self-Avoiding-Walk Connective Constant

    Full text link
    We give an elementary new method for obtaining rigorous lower bounds on the connective constant for self-avoiding walks on the hypercubic lattice ZdZ^d. The method is based on loop erasure and restoration, and does not require exact enumeration data. Our bounds are best for high dd, and in fact agree with the first four terms of the 1/d1/d expansion for the connective constant. The bounds are the best to date for dimensions d3d \geq 3, but do not produce good results in two dimensions. For d=3,4,5,6d=3,4,5,6, respectively, our lower bound is within 2.4\%, 0.43\%, 0.12\%, 0.044\% of the value estimated by series extrapolation.Comment: 35 pages, 388480 bytes Postscript, NYU-TH-93/02/0

    Localization criteria for Anderson models on locally finite graphs

    Full text link
    We prove spectral and dynamical localization for Anderson models on locally finite graphs using the fractional moment method. Our theorems extend earlier results on localization for the Anderson model on \ZZ^d. We establish geometric assumptions for the underlying graph such that localization can be proven in the case of sufficiently large disorder

    Dual Monte Carlo and Cluster Algorithms

    Full text link
    We discuss the development of cluster algorithms from the viewpoint of probability theory and not from the usual viewpoint of a particular model. By using the perspective of probability theory, we detail the nature of a cluster algorithm, make explicit the assumptions embodied in all clusters of which we are aware, and define the construction of free cluster algorithms. We also illustrate these procedures by rederiving the Swendsen-Wang algorithm, presenting the details of the loop algorithm for a worldline simulation of a quantum S=S= 1/2 model, and proposing a free cluster version of the Swendsen-Wang replica method for the random Ising model. How the principle of maximum entropy might be used to aid the construction of cluster algorithms is also discussed.Comment: 25 pages, 4 figures, to appear in Phys.Rev.

    A multiple replica approach to simulate reactive trajectories

    Full text link
    A method to generate reactive trajectories, namely equilibrium trajectories leaving a metastable state and ending in another one is proposed. The algorithm is based on simulating in parallel many copies of the system, and selecting the replicas which have reached the highest values along a chosen one-dimensional reaction coordinate. This reaction coordinate does not need to precisely describe all the metastabilities of the system for the method to give reliable results. An extension of the algorithm to compute transition times from one metastable state to another one is also presented. We demonstrate the interest of the method on two simple cases: a one-dimensional two-well potential and a two-dimensional potential exhibiting two channels to pass from one metastable state to another one

    Logarithmic corrections in the free energy of monomer-dimer model on plane lattices with free boundaries

    Full text link
    Using exact computations we study the classical hard-core monomer-dimer models on m x n plane lattice strips with free boundaries. For an arbitrary number v of monomers (or vacancies), we found a logarithmic correction term in the finite-size correction of the free energy. The coefficient of the logarithmic correction term depends on the number of monomers present (v) and the parity of the width n of the lattice strip: the coefficient equals to v when n is odd, and v/2 when n is even. The results are generalizations of the previous results for a single monomer in an otherwise fully packed lattice of dimers.Comment: 4 pages, 2 figure

    Percolative shunting on electrified surface

    Full text link
    The surface discharge of electrified dielectrics at high humidity is considered. The percolative nature of charge transport in electrets is established. Particular attention is given to the phenomena of adsorption and nucleation of electrically conducting phase in the cause of percolation cluster growth on electrified surface. The critical index of the correlation lenght for percolation cluster is found, and its value is in good agreement with the known theoretical estimations.Comment: 4 pages with 1 figure, revtex, published in Tech. Phys. Lett. 25 (1999) 877-879 with one additional figur

    Thermodynamics of Large AdS Black Holes

    Full text link
    We consider leading order quantum corrections to the geometry of large AdS black holes in a spherical reduction of four-dimensional Einstein gravity with negative cosmological constant. The Hawking temperature grows without bound with increasing black hole mass, yet the semiclassical back-reaction on the geometry is relatively mild, indicating that observers in free fall outside a large AdS black hole never see thermal radiation at the Hawking temperature. The positive specific heat of large AdS black holes is a statement about the dual gauge theory rather than an observable property on the gravity side. Implications for string thermodynamics with an AdS infrared regulator are briefly discussed.Comment: 17 pages, 1 figure, v2. added reference
    corecore