21 research outputs found

    The Renaissance or the cuckoo clock

    No full text

    Impact of Detergents on Membrane Protein Complex Isolation

    No full text
    Detergents play an essential role during the isolation of membrane protein complexes. Inappropriate use of detergents may affect the native fold of the membrane proteins, their binding to antibodies, or their interaction with partner proteins. Here we used cadherin-11 (Cad11) as an example to examine the impact of detergents on membrane protein complex isolation. We found that mAb 1A5 could immunoprecipitate Cad11 when membranes were solubilized by dodecyl maltoside (DDM) but not by octylglucoside, suggesting that octylglucoside interferes with Cad11-mAb 1A5 interaction. Furthermore, we compared the effects of Brij-35, Triton X-100, cholate, CHAPSO, Zwittergent 3-12, Deoxy BIG CHAP, and digitonin on Cad11 solubilization and immunoprecipitation. We found that all detergents except Brij-35 could solubilize Cad11 from the membrane. Upon immunoprecipitation, we found that beta-catenin, a known cadherin-interacting protein, was present in Cad11 immune complex among the detergents tested except Brij-35. However, the association of p120 catenin with Cad11 varied depending on the detergents used. Using isobaric tag for relative and absolute quantitation (iTRAQ) to determine the relative levels of proteins in Cad11 immune complexes, we found that DDM and Triton X-100 were more efficient than cholate in solubilization and immunoprecipitation of Cad11 and resulted in the identification of both canonical and new candidate Cad11-interacting proteins

    PGE2 Promotes Apoptosis Induced by Cytokine Deprivation through EP3 Receptor and Induces Bim in Mouse Mast Cells

    Get PDF
    Increased mast cell numbers are observed at sites of allergic inflammation and restoration of normal mast cell numbers is critical to the resolution of these responses. Early studies showed that cytokines protect mast cells from apoptosis, suggesting a simple model in which diminished cytokine levels during resolution leads to cell death. The report that prostaglandins can contribute both to recruitment and to the resolution of inflammation together with the demonstration that mast cells express all four PGE2 receptors raises the question of whether a single PGE2 receptor mediates the ability of PGE2 to regulate mast cell survival and apoptosis. We report here that PGE2 through the EP3 receptor promotes cell death of mast cells initiated by cytokine withdrawal. Furthermore, the ability of PGE2 to limit reconstitution of tissues with cultured mast cells is lost in cell lacking the EP3 receptor. Apoptosis is accompanied by higher dissipation of mitochondrial potential (ΔΨm), increased caspase-3 activation, chromatin condensation, and low molecular weight DNA cleavage. PGE2 augmented cell death is dependent on an increase in intracellular calcium release, calmodulin dependent kinase II and MAPK activation. Synergy between the EP3 pathway and the intrinsic mitochondrial apoptotic pathway results in increased Bim expression and higher sensitivity of mast cells to cytokine deprivation. This supports a model in which PGE2 can contribute to the resolution of inflammation in part by augmenting the removal of inflammatory cells in this case, mast cells
    corecore