4,638 research outputs found

    Advanced Turboprop Project

    Get PDF
    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987

    Effect of damper on overall and blade-element performance of a compressor rotor having a tip speed of 1151 feet per second and an aspect ratio of 3.6

    Get PDF
    The overall and blade-element performance of two configurations of a moderately high aspect ratio transonic compressor rotor are presented. The subject rotor has conventional blade dampers. The performance is compared with a rotor utilizing dual wire friction dampers. At design speed the subject achieved a pressure ratio of 1.52 and efficiency of 0.89 at a near design weight flow of 72.1 pounds per second. The rotor with wire dampers gave consistently higher pressure ratios at each speed, but efficiencies for the two rotors were about the same. Stall margin for the subject rotor was 20.4 percent, but for the wire damped rotor only 4.0 percent

    Small-scale convection beneath the transverse ranges, California: Implications for interpretation of gravity anomalies

    Get PDF
    Tomographic inversion of upper mantle P wave velocity heterogeneities beneath southern California shows two prominent features: an east-west trending curtain of high velocity material (up to 3% fast) in the upper 250 km beneath the Transverse Ranges and a region of low velocity material (up to 4% slow) in the 100 km beneath the Salton Trough. These seismic velocity anomalies were interpreted as due to small scale convection in the mantle. Using this hypothesis and assuming that temperature and density anomalies are linearly related to seismic velocity anomalies through standard coefficients of proportionality, leads to inferred variations of approx. + or - 300 C and approx. + or - 0.03 g/cc

    Performance of a 1380-foot-per-second-tip-speed axial-flow compressor rotor with a blade tip solidity of 1.3

    Get PDF
    Aerodynamic design parameters are presented along the overall and blade element performance, of an axial flow compressor rotor designed to study the effects of blade solidity on efficiency and stall margin. At design speed the peak efficiency was 0.844 and occurred at an equivalent weight flow of 63.5 lb/sec with a total pressure ratio of 1.801. Design efficiency, pressure ratio, and weight flow 0.814, 1.65, and 65.3(41.1 lb/sec/sq ft of annulus area), respectively. Stall margin for design speed was 6.4 percent based on the weight flow and pressure ratio values at peak efficiency and just prior to stall

    Adversarial Deep Structured Nets for Mass Segmentation from Mammograms

    Full text link
    Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches. \footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}Comment: Accepted by ISBI2018. arXiv admin note: substantial text overlap with arXiv:1612.0597

    Fundamental studies in geodynamics

    Get PDF
    Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix
    corecore