2,461 research outputs found

    Fidelity Decay as an Efficient Indicator of Quantum Chaos

    Full text link
    Recent work has connected the type of fidelity decay in perturbed quantum models to the presence of chaos in the associated classical models. We demonstrate that a system's rate of fidelity decay under repeated perturbations may be measured efficiently on a quantum information processor, and analyze the conditions under which this indicator is a reliable probe of quantum chaos and related statistical properties of the unperturbed system. The type and rate of the decay are not dependent on the eigenvalue statistics of the unperturbed system, but depend on the system's eigenvector statistics in the eigenbasis of the perturbation operator. For random eigenvector statistics the decay is exponential with a rate fixed precisely by the variance of the perturbation's energy spectrum. Hence, even classically regular models can exhibit an exponential fidelity decay under generic quantum perturbations. These results clarify which perturbations can distinguish classically regular and chaotic quantum systems.Comment: 4 pages, 3 figures, LaTeX; published version (revised introduction and discussion

    Edge effects in graphene nanostructures: II. Semiclassical theory of spectral fluctuations and quantum transport

    Get PDF
    We investigate the effect of different edge types on the statistical properties of both the energy spectrum of closed graphene billiards and the conductance of open graphene cavities in the semiclassical limit. To this end, we use the semiclassical Green's function for ballistic graphene flakes that we have derived in Reference 1. First we study the spectral two point correlation function, or more precisely its Fourier transform the spectral form factor, starting from the graphene version of Gutzwiller's trace formula for the oscillating part of the density of states. We calculate the two leading order contributions to the spectral form factor, paying particular attention to the influence of the edge characteristics of the system. Then we consider transport properties of open graphene cavities. We derive generic analytical expressions for the classical conductance, the weak localization correction, the size of the universal conductance fluctuations and the shot noise power of a ballistic graphene cavity. Again we focus on the effects of the edge structure. For both, the conductance and the spectral form factor, we find that edge induced pseudospin interference affects the results significantly. In particular intervalley coupling mediated through scattering from armchair edges is the key mechanism that governs the coherent quantum interference effects in ballistic graphene cavities

    How to detect level crossings without looking at the spectrum

    Full text link
    We remind the reader that it is possible to tell if two or more eigenvalues of a matrix are equal, without calculating the eigenvalues. We then use this property to detect (avoided) crossings in the spectra of quantum Hamiltonians representable by matrices. This approach provides a pedagogical introduction to (avoided) crossings, is capable of handling realistic Hamiltonians analytically, and offers a way to visualize crossings which is sometimes superior to that provided by the spectrum. We illustrate the method using the Breit-Rabi Hamiltonian to describe the hyperfine-Zeeman structure of the ground state hydrogen atom in a uniform magnetic field.Comment: Accepted for publication in the American Journal of Physic

    The information entropy of quantum mechanical states

    Full text link
    It is well known that a Shannon based definition of information entropy leads in the classical case to the Boltzmann entropy. It is tempting to regard the Von Neumann entropy as the corresponding quantum mechanical definition. But the latter is problematic from quantum information point of view. Consequently we introduce a new definition of entropy that reflects the inherent uncertainty of quantum mechanical states. We derive for it an explicit expression, and discuss some of its general properties. We distinguish between the minimum uncertainty entropy of pure states, and the excess statistical entropy of mixtures.Comment: 7 pages, 1 figur

    Characterization of complex quantum dynamics with a scalable NMR information processor

    Get PDF
    We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behaviour and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system, or measuring the decoherence rate from engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that publishe

    Distribution of the spacing between two adjacent avoided crossings

    Full text link
    We consider the frequency at which avoided crossings appear in an energy level structure when an external field is applied to a quantum chaotic system. The distribution of the spacing in the parameter between two adjacent avoided crossings is investigated. Using a random matrix model, we find that the distribution of these spacings is well fitted by a power-law distribution for small spacings. The powers are 2 and 3 for the Gaussian orthogonal ensemble and Gaussian unitary ensemble, respectively. We also find that the distributions decay exponentially for large spacings. The distributions in concrete quantum chaotic systems agree with those of the random matrix model.Comment: 11 page

    Fractal Fidelity as a signature of Quantum Chaos

    Full text link
    We analyze the fidelity of a quantum simulation and we show that it displays fractal fluctuations iff the simulated dynamics is chaotic. This analysis allows us to investigate a given simulated dynamics without any prior knowledge. In the case of integrable dynamics, the appearance of fidelity fractal fluctuations is a signal of a highly corrupted simulation. We conjecture that fidelity fractal fluctuations are a signature of the appearance of quantum chaos. Our analysis can be realized already by a few qubit quantum processor.Comment: 5 pages, 5 figure

    Universality of Decoherence

    Full text link
    We consider environment induced decoherence of quantum superpositions to mixtures in the limit in which that process is much faster than any competing one generated by the Hamiltonian HsysH_{\rm sys} of the isolated system. While the golden rule then does not apply we can discard HsysH_{\rm sys}. By allowing for simultaneous couplings to different reservoirs, we reveal decoherence as a universal short-time phenomenon independent of the character of the system as well as the bath and of the basis the superimposed states are taken from. We discuss consequences for the classical behavior of the macroworld and quantum measurement: For the decoherence of superpositions of macroscopically distinct states the system Hamiltonian is always negligible.Comment: 4 revtex pages, no figure

    Phase Transitions in Generalised Spin-Boson (Dicke) Models

    Full text link
    We consider a class of generalised single mode Dicke Hamiltonians with arbitrary boson coupling in the pseudo-spin xx-zz plane. We find exact solutions in the thermodynamic, large-spin limit as a function of the coupling angle, which allows us to continuously move between the simple dephasing and the original Dicke Hamiltonians. Only in the latter case (orthogonal static and fluctuating couplings), does the parity-symmetry induced quantum phase transition occur.Comment: 6 pages, 5 figue

    Chaotic Transport in the Symmetry Crossover Regime with a Spin-orbit Interaction

    Full text link
    We study a chaotic quantum transport in the presence of a weak spin-orbit interaction. Our theory covers the whole symmetry crossover regime between time-reversal invariant systems with and without a spin-orbit interaction. This situation is experimentally realizable when the spin-orbit interaction is controlled in a conductor by applying an electric field. We utilize a semiclassical approach which has recently been developed. In this approach, the non-Abelian nature of the spin diffusion along a classical trajectory plays a crucial role. New analytical expressions with one crossover parameter are semiclassically derived for the average conductance, conductance variance and shot noise. Moreover numerical results on a random matrix model describing the crossover from the GOE (Gaussian Orthogonal Ensemble) to the GSE (Gaussian Symplectic Ensemble) are compared with the semiclassical expressions.Comment: 13 pages, 7 figure
    • …
    corecore