1,568 research outputs found
Interface bonding of a ferromagnetic/semiconductor junction : a photoemission study of Fe/ZnSe(001)
We have probed the interface of a ferromagnetic/semiconductor (FM/SC)
heterojunction by a combined high resolution photoemission spectroscopy and
x-ray photoelectron diffraction study. Fe/ZnSe(001) is considered as an example
of a very low reactivity interface system and it expected to constitute large
Tunnel Magnetoresistance devices. We focus on the interface atomic environment,
on the microscopic processes of the interface formation and on the iron
valence-band. We show that the Fe contact with ZnSe induces a chemical
conversion of the ZnSe outermost atomic layers. The main driving force that
induces this rearrangement is the requirement for a stable Fe-Se bonding at the
interface and a Se monolayer that floats at the Fe growth front. The released
Zn atoms are incorporated in substitution in the Fe lattice position. This
formation process is independent of the ZnSe surface termination (Zn or Se).
The Fe valence-band evolution indicates that the d-states at the Fermi level
show up even at submonolayer Fe coverage but that the Fe bulk character is only
recovered above 10 monolayers. Indeed, the Fe 1-band states,
theoretically predicted to dominate the tunneling conductance of Fe/ZnSe/Fe
junctions, are strongly modified at the FM/SC interface.Comment: 23 pages, 5 figures, submitted to Physical review
Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures
We report on resonant tunneling magnetoresistance via localized states
through a ZnSe semiconducting barrier which can reverse the sign of the
effective spin polarization of tunneling electrons. Experiments performed on
Fe/ZnSe/Fe planar junctions have shown that positive, negative or even its
sign-reversible magnetoresistance can be obtained, depending on the bias
voltage, the energy of localized states in the ZnSe barrier and spatial
symmetry. The averaging of conduction over all localized states in a junction
under resonant condition is strongly detrimental to the magnetoresistance
A method of enciphering quantum states
In this paper, we propose a method of enciphering quantum states of two-state
systems (qubits) for sending them in secrecy without entangled qubits shared by
two legitimate users (Alice and Bob). This method has the following two
properties. First, even if an eavesdropper (Eve) steals qubits, she can extract
information from them with certain probability at most. Second, Alice and Bob
can confirm that the qubits are transmitted between them correctly by measuring
a signature. If Eve measures m qubits one by one from n enciphered qubits and
sends alternative ones (the Intercept/Resend attack), a probability that Alice
and Bob do not notice Eve's action is equal to (3/4)^m or less. Passwords for
decryption and the signature are given by classical binary strings and they are
disclosed through a public channel. Enciphering classical information by this
method is equivalent to the one-time pad method with distributing a classical
key (random binary string) by the BB84 protocol. If Eve takes away qubits,
Alice and Bob lose the original quantum information. If we apply our method to
a state in iteration, Eve's success probability decreases exponentially. We
cannot examine security against the case that Eve makes an attack with using
entanglement. This remains to be solved in the future.Comment: 21 pages, Latex2e, 10 epsf figures. v2: 22 pages, added two
references, several clarifying sentences are added in Sec. 5, typos
corrected, a new proof is provided in Appendix A and it is shorter than the
old one. v3: 23 pages, one section is adde
Revisiting Deniability in Quantum Key Exchange via Covert Communication and Entanglement Distillation
We revisit the notion of deniability in quantum key exchange (QKE), a topic
that remains largely unexplored. In the only work on this subject by Donald
Beaver, it is argued that QKE is not necessarily deniable due to an
eavesdropping attack that limits key equivocation. We provide more insight into
the nature of this attack and how it extends to other constructions such as QKE
obtained from uncloneable encryption. We then adopt the framework for quantum
authenticated key exchange, developed by Mosca et al., and extend it to
introduce the notion of coercer-deniable QKE, formalized in terms of the
indistinguishability of real and fake coercer views. Next, we apply results
from a recent work by Arrazola and Scarani on covert quantum communication to
establish a connection between covert QKE and deniability. We propose DC-QKE, a
simple deniable covert QKE protocol, and prove its deniability via a reduction
to the security of covert QKE. Finally, we consider how entanglement
distillation can be used to enable information-theoretically deniable protocols
for QKE and tasks beyond key exchange.Comment: 16 pages, published in the proceedings of NordSec 201
Some Directions beyond Traditional Quantum Secret Sharing
We investigate two directions beyond the traditional quantum secret sharing
(QSS). First, a restriction on QSS that comes from the no-cloning theorem is
that any pair of authorized sets in an access structure should overlap. From
the viewpoint of application, this places an unnatural constraint on secret
sharing. We present a generalization, called assisted QSS (AQSS), where access
structures without pairwise overlap of authorized sets is permissible, provided
some shares are withheld by the share dealer. We show that no more than
withheld shares are required, where is the minimum number
of {\em partially linked classes} among the authorized sets for the QSS. Our
result means that such applications of QSS need not be thwarted by the
no-cloning theorem. Secondly, we point out a way of combining the features of
QSS and quantum key distribution (QKD) for applications where a classical
information is shared by quantum means. We observe that in such case, it is
often possible to reduce the security proof of QSS to that of QKD.Comment: To appear in Physica Scripta, 7 pages, 1 figure, subsumes
arXiv:quant-ph/040720
Optimality of private quantum channels
We addressed the question of optimality of private quantum channels. We have
shown that the Shannon entropy of the classical key necessary to securely
transfer the quantum information is lower bounded by the entropy exchange of
the private quantum channel and von Neumann entropy of the ciphertext
state . Based on these bounds we have shown that decomposition
of private quantum channels into orthogonal unitaries (if exists) is optimizing
the entropy. For non-ancillary single qubit PQC we have derived the optimal
entropy for arbitrary set of plaintexts. In particular, we have shown that
except when the (closure of the) set of plaintexts contains all states, one bit
key is sufficient. We characterized and analyzed all the possible single qubit
private quantum channels for arbitrary set of plaintexts. For the set of
plaintexts consisting of all qubit states we have characterized all possible
approximate private quantum channels and we have derived the relation between
the security parameter and the corresponding minimal entropy.Comment: no commen
New Developments in Quantum Algorithms
In this survey, we describe two recent developments in quantum algorithms.
The first new development is a quantum algorithm for evaluating a Boolean
formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This
provides quantum speedups for any problem that can be expressed via Boolean
formulas. This result can be also extended to span problems, a generalization
of Boolean formulas. This provides an optimal quantum algorithm for any Boolean
function in the black-box query model.
The second new development is a quantum algorithm for solving systems of
linear equations. In contrast with traditional algorithms that run in time
O(N^{2.37...}) where N is the size of the system, the quantum algorithm runs in
time O(\log^c N). It outputs a quantum state describing the solution of the
system.Comment: 11 pages, 1 figure, to appear as an invited survey talk at MFCS'201
Rabies screen reveals GPe control of cocaine-triggered plasticity.
Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the increase in GPe labelling. Inhibition of GPe activity revealed that it contributes to two forms of cocaine-triggered behavioural plasticity, at least in part by disinhibiting dopamine neurons in the ventral tegmental area. These results suggest that rabies-based unbiased screening of changes in input populations can identify previously unappreciated circuit elements that critically support behavioural adaptations
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
- …
