6,071 research outputs found

    Development of polymer network of phenolic and epoxies resins mixed with linseed oil: pilot study

    Get PDF
    Epoxy resin was mixed with phenolic resins in different percentages by weight. Composite 40/60 means the proportion by weight of epoxy resin is 40 percent. It was found that only composites 50/50 and 40/60 could be cured in ambient conditions. Dynamic mechanical analysis showed that only these two composites form interpenetrating polymer network. The addition of linseed oil to the two resins results also in the formation of interpenetrating network irrespective of proportion by weight of the resins; the mechanical properties will only be better when the percentage by weight of epoxy resin is higher; the aim of reducing cost and at the same time maintaining the mechanical properties cannot be fully achieved because epoxy resin is much more expensive than its counterpart

    Initialization by measurement of a two-qubit superconducting circuit

    Full text link
    We demonstrate initialization by joint measurement of two transmon qubits in 3D circuit quantum electrodynamics. Homodyne detection of cavity transmission is enhanced by Josephson parametric amplification to discriminate the two-qubit ground state from single-qubit excitations non-destructively and with 98.1% fidelity. Measurement and postselection of a steady-state mixture with 4.7% residual excitation per qubit achieve 98.8% fidelity to the ground state, thus outperforming passive initialization.Comment: 5 pages, 4 figures, and Supplementary Information (7 figures, 1 table

    A Tunable Anomalous Hall Effect in a Non-Ferromagnetic System

    Full text link
    We measure the low-field Hall resistivity of a magnetically-doped two-dimensional electron gas as a function of temperature and electrically-gated carrier density. Comparing these results with the carrier density extracted from Shubnikov-de Haas oscillations reveals an excess Hall resistivity that increases with decreasing temperature. This excess Hall resistivity qualitatively tracks the paramagnetic polarization of the sample, in analogy to the ferromagnetic anomalous Hall effect. The data are consistent with skew-scattering of carriers by disorder near the crossover to localization

    Unusual photoemission resonances of oxygen-dopant induced states in Bi2_{2}Sr2_2CaCu2_2O8+x_{8+x}

    Full text link
    We have performed an angular-resolved photoemission study of underdoped, optimally doped and overdoped Bi2_{2}Sr2_2CaCu2_2O8+x_{8+x} samples using a wide photon energy range (15 - 100 eV). We report a small and broad non-dispersive A1g_{1g} peak in the energy distribution curves whose intensity scales with doping. We attribute it to a local impurity state similar to the one observed recently by scanning tunneling spectroscopy and identified as the oxygen dopants. Detailed analysis of the resonance profile and comparison with the single-layered Bi2_{2}Sr2_2CuO6+x_{6+x} suggest a mixing of this local state with Cu via the apical oxygens.Comment: 4 pages, 4 figure

    Signatures of a Pressure-Induced Topological Quantum Phase Transition in BiTeI

    Full text link
    We report the observation of two signatures of a pressure-induced topological quantum phase transition in the polar semiconductor BiTeI using x-ray powder diffraction and infrared spectroscopy. The x-ray data confirm that BiTeI remains in its ambient-pressure structure up to 8 GPa. The lattice parameter ratio c/a shows a minimum between 2.0-2.9 GPa, indicating an enhanced c-axis bonding through pz band crossing as expected during the transition. Over the same pressure range, the infrared spectra reveal a maximum in the optical spectral weight of the charge carriers, reflecting the closing and reopening of the semiconducting band gap. Both of these features are characteristics of a topological quantum phase transition, and are consistent with a recent theoretical proposal.Comment: revised final versio

    Anomalous physical properties of underdoped weak-ferromagnetic superconductor RuSr2_2EuCu2_{2}O8_{8}

    Full text link
    Similar to the optimal-doped, weak-ferromagnetic (WFM induced by canted antiferromagnetism, TCurie_{Curie} = 131 K) and superconducting (Tc_{c} = 56 K) RuSr2_{2}GdCu2_{2}O8_{8}, the underdoped RuSr2_{2}EuCu2_{2}O8_{8} (TCurie_{Curie} = 133 K, Tc_{c} = 36 K) also exhibited a spontaneous vortex state (SVS) between 16 K and 36 K. The low field (±\pm20 G) superconducting hysteresis loop indicates a weak and narrow Meissner state region of average lower critical field Bc1ave_{c1}^{ave}(T) = Bc1ave_{c1}^{ave}(0)[1 - (T/TSVS_{SVS})2^{2}], with Bc1ave_{c1}^{ave}(0) = 7 G and TSVS_{SVS} = 16 K. The vortex melting transition (Tmelting_{melting} = 21 K) below Tc_{c} obtained from the broad resistivity drop and the onset of diamagnetic signal indicates a vortex liquid region due to the coexistence and interplay between superconductivity and WFM order. No visible jump in specific heat was observed near Tc_{c} for Eu- and Gd-compound. This is not surprising, since the electronic specific heat is easily overshadowed by the large phonon and weak-ferromagnetic contributions. Furthermore, a broad resistivity transition due to low vortex melting temperature would also lead to a correspondingly reduced height of any specific heat jump. Finally, with the baseline from the nonmagnetic Eu-compound, specific heat data analysis confirms the magnetic entropy associated with antiferromagnetic ordering of Gd3+^{3+} (J = S = 7/2) at 2.5 K to be close to NAk\it{N_{A}k} ln8 as expected.Comment: 7 figure
    • …
    corecore