4,997 research outputs found
Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves
We propose a generalization of the two-dimensional eikonal-limit cloak
derived from a conformal transformation to three dimensions. The proposed cloak
is a spherical shell composed of only isotropic media; it operates in the
transmission mode and requires no mirror or ground plane. Unlike the well-known
omnidirectional spherical cloaks, it may reduce visibility of an arbitrary
object only for a very limited range of observation angles. In the
short-wavelength limit, this cloaking structure restores not only the
trajectories of incident rays, but also their phase, which is a necessary
ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse
vector-wave (electromagnetic) versions are presented.Comment: 17 pages, 12 figure
On the Abundance of Circumbinary Planets
We present here the first observationally based determination of the rate of
occurrence of circumbinary planets. This is derived from the publicly available
Kepler data, using an automated search algorithm and debiasing process to
produce occurrence rates implied by the seven systems already known. These
rates depend critically on the planetary inclination distribution: if
circumbinary planets are preferentially coplanar with their host binaries, as
has been suggested, then the rate of occurrence of planets with
orbiting with \ d is \% (95\% confidence limits),
higher than but consistent with single star rates. If on the other hand the
underlying planetary inclination distribution is isotropic, then this
occurrence rate rises dramatically, to give a lower limit of 47\%. This implies
that formation and subsequent dynamical evolution in circumbinary disks must
either lead to largely coplanar planets, or proceed with significantly greater
ease than in circumstellar disks. As a result of this investigation we also
show that giant planets () are significantly less common in
circumbinary orbits than their smaller siblings, and confirm that the proposed
shortfall of circumbinary planets orbiting the shorter period binaries in the
Kepler sample is a real effect.Comment: Accepted for publication in MNRAS (1st August 2014). 12 pages. Update
to match final version, including clarifications and new figures. Results are
unchange
The Abelian Manna model on two fractal lattices
We analyze the avalanche size distribution of the Abelian Manna model on two
different fractal lattices with the same dimension d_g=ln(3)/ln(2), with the
aim to probe for scaling behavior and to study the systematic dependence of the
critical exponents on the dimension and structure of the lattices. We show that
the scaling law D(2-tau)=d_w generalizes the corresponding scaling law on
regular lattices, in particular hypercubes, where d_w=2. Furthermore, we
observe that the lattice dimension d_g, the fractal dimension of the random
walk on the lattice d_w, and the critical exponent D, form a plane in 3D
parameter space, i.e. they obey the linear relationship D=0.632(3) d_g +
0.98(1) d_w - 0.49(3).Comment: 4 pages, 3 figures, 3 tables, submitted to PRE as a Brief Repor
Analytic Confinement and Regge Trajectories
A simple relativistic quantum field model with the Yukawa-type interaction is
considered to demonstrate that the analytic confinement of the constituent
("quarks") and carrier ("gluons") particles explains qualitatively the basic
dynamical properties of the spectrum of mesons considered as two-particle
stable bound states of quarks and gluons: the quarks and gluons are confined,
the glueballs represent bound states of massless gluons, the masses of mesons
are larger than the sum of the constituent quark masses and the Regge
trajectories of mesonic orbital excitations are almost linear.Comment: RevTeX, 16 pages, 3 figures and 2 table
Measuring longitudinal amplitudes for electroproduction of pseudoscalar mesons using recoil polarization in parallel kinematics
We propose a new method for measuring longitudinal amplitudes for
electroproduction of pseudoscalar mesons that exploits a symmetry relation for
polarization observables in parallel kinematics. This polarization technique
does not require variation of electron scattering kinematics and avoids the
major sources of systematic errors in Rosenbluth separation.Comment: intended for Phys. Rev. C as a Brief Repor
Properties of Regge Trajectories
Early Chew-Frautschi plots show that meson and baryon Regge trajectoies are
approximately linear and non-intersecting. In this paper, we reconstruct all
Regge trajectories from the most recent data. Our plots show that meson
trajectories are non-linear and intersecting. We also show that all current
meson Regge trajectories models are ruled out by data.Comment: 30 pages, latex, 18 figures, to be published in Physical Review
Rigorous formulation of oblique incidence scattering from dispersive media
We formulate a finite-difference time-domain (FDTD) approach to simulate
electromagnetic wave scattering from scatterers embedded in layered dielectric
or dispersive media. At the heart of our approach is a derivation of an
equivalent one-dimensional wave propagation equation for dispersive media
characterized by a linear sum of Debye-, Drude- and Lorentz-type poles. The
derivation is followed by a detailed discussion of the simulation setup and
numerical issues. The developed methodology is tested by comparison with
analytical reflection and transmission coefficients for scattering from a slab,
illustrating good convergence behavior. The case of scattering from a
sub-wavelength slit in a dispersive thin film is explored to demonstrate the
applicability of our formulation to time- and incident angle-dependent analysis
of surface waves generated by an obliquely incident plane wave.Comment: 35 pages, 8 figures, 4 table
Why Nature has made a choice of one time and three space coordinates?
We propose a possible answer to one of the most exciting open questions in
physics and cosmology, that is the question why we seem to experience four-
dimensional space-time with three ordinary and one time dimensions. We have
known for more than 70 years that (elementary) particles have spin degrees of
freedom, we also know that besides spin they also have charge degrees of
freedom, both degrees of freedom in addition to the position and momentum
degrees of freedom. We may call these ''internal degrees of freedom '' the
''internal space'' and we can think of all the different particles, like quarks
and leptons, as being different internal states of the same particle. The
question then naturally arises: Is the choice of the Minkowski metric and the
four-dimensional space-time influenced by the ''internal space''?
Making assumptions (such as particles being in first approximation massless)
about the equations of motion, we argue for restrictions on the number of space
and time dimensions. (Actually the Standard model predicts and experiments
confirm that elementary particles are massless until interactions switch on
masses.)
Accepting our explanation of the space-time signature and the number of
dimensions would be a point supporting (further) the importance of the
''internal space''.Comment: 13 pages, LaTe
A Self-Organized Method for Computing the Epidemic Threshold in Computer Networks
In many cases, tainted information in a computer network can spread in a way
similar to an epidemics in the human world. On the other had, information
processing paths are often redundant, so a single infection occurrence can be
easily "reabsorbed". Randomly checking the information with a central server is
equivalent to lowering the infection probability but with a certain cost (for
instance processing time), so it is important to quickly evaluate the epidemic
threshold for each node. We present a method for getting such information
without resorting to repeated simulations. As for human epidemics, the local
information about the infection level (risk perception) can be an important
factor, and we show that our method can be applied to this case, too. Finally,
when the process to be monitored is more complex and includes "disruptive
interference", one has to use actual simulations, which however can be carried
out "in parallel" for many possible infection probabilities
- …
