4,997 research outputs found

    Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves

    Full text link
    We propose a generalization of the two-dimensional eikonal-limit cloak derived from a conformal transformation to three dimensions. The proposed cloak is a spherical shell composed of only isotropic media; it operates in the transmission mode and requires no mirror or ground plane. Unlike the well-known omnidirectional spherical cloaks, it may reduce visibility of an arbitrary object only for a very limited range of observation angles. In the short-wavelength limit, this cloaking structure restores not only the trajectories of incident rays, but also their phase, which is a necessary ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse vector-wave (electromagnetic) versions are presented.Comment: 17 pages, 12 figure

    On the Abundance of Circumbinary Planets

    Full text link
    We present here the first observationally based determination of the rate of occurrence of circumbinary planets. This is derived from the publicly available Kepler data, using an automated search algorithm and debiasing process to produce occurrence rates implied by the seven systems already known. These rates depend critically on the planetary inclination distribution: if circumbinary planets are preferentially coplanar with their host binaries, as has been suggested, then the rate of occurrence of planets with Rp>6RR_p>6R_\oplus orbiting with Pp<300P_p<300\ d is 10.06.5+1810.0 ^{+18}_{-6.5}\% (95\% confidence limits), higher than but consistent with single star rates. If on the other hand the underlying planetary inclination distribution is isotropic, then this occurrence rate rises dramatically, to give a lower limit of 47\%. This implies that formation and subsequent dynamical evolution in circumbinary disks must either lead to largely coplanar planets, or proceed with significantly greater ease than in circumstellar disks. As a result of this investigation we also show that giant planets (>10R{>}10R_\oplus) are significantly less common in circumbinary orbits than their smaller siblings, and confirm that the proposed shortfall of circumbinary planets orbiting the shorter period binaries in the Kepler sample is a real effect.Comment: Accepted for publication in MNRAS (1st August 2014). 12 pages. Update to match final version, including clarifications and new figures. Results are unchange

    The Abelian Manna model on two fractal lattices

    Full text link
    We analyze the avalanche size distribution of the Abelian Manna model on two different fractal lattices with the same dimension d_g=ln(3)/ln(2), with the aim to probe for scaling behavior and to study the systematic dependence of the critical exponents on the dimension and structure of the lattices. We show that the scaling law D(2-tau)=d_w generalizes the corresponding scaling law on regular lattices, in particular hypercubes, where d_w=2. Furthermore, we observe that the lattice dimension d_g, the fractal dimension of the random walk on the lattice d_w, and the critical exponent D, form a plane in 3D parameter space, i.e. they obey the linear relationship D=0.632(3) d_g + 0.98(1) d_w - 0.49(3).Comment: 4 pages, 3 figures, 3 tables, submitted to PRE as a Brief Repor

    Analytic Confinement and Regge Trajectories

    Full text link
    A simple relativistic quantum field model with the Yukawa-type interaction is considered to demonstrate that the analytic confinement of the constituent ("quarks") and carrier ("gluons") particles explains qualitatively the basic dynamical properties of the spectrum of mesons considered as two-particle stable bound states of quarks and gluons: the quarks and gluons are confined, the glueballs represent bound states of massless gluons, the masses of mesons are larger than the sum of the constituent quark masses and the Regge trajectories of mesonic orbital excitations are almost linear.Comment: RevTeX, 16 pages, 3 figures and 2 table

    Measuring longitudinal amplitudes for electroproduction of pseudoscalar mesons using recoil polarization in parallel kinematics

    Get PDF
    We propose a new method for measuring longitudinal amplitudes for electroproduction of pseudoscalar mesons that exploits a symmetry relation for polarization observables in parallel kinematics. This polarization technique does not require variation of electron scattering kinematics and avoids the major sources of systematic errors in Rosenbluth separation.Comment: intended for Phys. Rev. C as a Brief Repor

    Properties of Regge Trajectories

    Get PDF
    Early Chew-Frautschi plots show that meson and baryon Regge trajectoies are approximately linear and non-intersecting. In this paper, we reconstruct all Regge trajectories from the most recent data. Our plots show that meson trajectories are non-linear and intersecting. We also show that all current meson Regge trajectories models are ruled out by data.Comment: 30 pages, latex, 18 figures, to be published in Physical Review

    Rigorous formulation of oblique incidence scattering from dispersive media

    Full text link
    We formulate a finite-difference time-domain (FDTD) approach to simulate electromagnetic wave scattering from scatterers embedded in layered dielectric or dispersive media. At the heart of our approach is a derivation of an equivalent one-dimensional wave propagation equation for dispersive media characterized by a linear sum of Debye-, Drude- and Lorentz-type poles. The derivation is followed by a detailed discussion of the simulation setup and numerical issues. The developed methodology is tested by comparison with analytical reflection and transmission coefficients for scattering from a slab, illustrating good convergence behavior. The case of scattering from a sub-wavelength slit in a dispersive thin film is explored to demonstrate the applicability of our formulation to time- and incident angle-dependent analysis of surface waves generated by an obliquely incident plane wave.Comment: 35 pages, 8 figures, 4 table

    Why Nature has made a choice of one time and three space coordinates?

    Get PDF
    We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is the question why we seem to experience four- dimensional space-time with three ordinary and one time dimensions. We have known for more than 70 years that (elementary) particles have spin degrees of freedom, we also know that besides spin they also have charge degrees of freedom, both degrees of freedom in addition to the position and momentum degrees of freedom. We may call these ''internal degrees of freedom '' the ''internal space'' and we can think of all the different particles, like quarks and leptons, as being different internal states of the same particle. The question then naturally arises: Is the choice of the Minkowski metric and the four-dimensional space-time influenced by the ''internal space''? Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. (Actually the Standard model predicts and experiments confirm that elementary particles are massless until interactions switch on masses.) Accepting our explanation of the space-time signature and the number of dimensions would be a point supporting (further) the importance of the ''internal space''.Comment: 13 pages, LaTe

    A Self-Organized Method for Computing the Epidemic Threshold in Computer Networks

    Full text link
    In many cases, tainted information in a computer network can spread in a way similar to an epidemics in the human world. On the other had, information processing paths are often redundant, so a single infection occurrence can be easily "reabsorbed". Randomly checking the information with a central server is equivalent to lowering the infection probability but with a certain cost (for instance processing time), so it is important to quickly evaluate the epidemic threshold for each node. We present a method for getting such information without resorting to repeated simulations. As for human epidemics, the local information about the infection level (risk perception) can be an important factor, and we show that our method can be applied to this case, too. Finally, when the process to be monitored is more complex and includes "disruptive interference", one has to use actual simulations, which however can be carried out "in parallel" for many possible infection probabilities
    corecore