2,022 research outputs found
Horava-Lifshitz gravity: tighter constraints for the Kehagias-Sfetsos solution from new solar system data
We analytically work out the perturbation induced by the Kehagias-Sfetsos
(KS) space-time solution of the Horava-Lifshitz (HL) modified gravity at long
distances on the two-body range for a pair of test particles A and B orbiting
the same mass M. We apply our results to the most recently obtained
range-residuals \delta\rho for some planets of the solar system (Mercury, Mars,
Saturn) ranged from the Earth to effectively constrain the dimensionsless KS
parameter \psi_0 for the Sun. We obtain \psi_0 >= 7.2 x 10^-10 (Mercury),
\psi_0 >= 9 x 10^-12 (Mars), \psi_0 >= 1.7 x 10^-12 (Saturn). Such lower bounds
are tighter than other ones existing in literature by several orders of
magnitude. We also preliminarily obtain \psi_0 >= 8 x 10^-10 for the system
constituted by the S2 star orbiting the Supermassive Black Hole (SBH) in the
center of the Galaxy.Comment: LaTex2e, 15 pages, 1 table, 3 figures, 31 references. Version
matching the one at press in International Journal of Modern Physics D
(IJMPD
Geodesic motions in extraordinary string geometry
The geodesic properties of the extraordinary vacuum string solution in (4+1)
dimensions are analyzed by using Hamilton-Jacobi method. The geodesic motions
show distinct properties from those of the static one. Especially, any freely
falling particle can not arrive at the horizon or singularity. There exist
stable null circular orbits and bouncing timelike and null geodesics. To get
into the horizon {or singularity}, a particle need to follow a non-geodesic
trajectory. We also analyze the orbit precession to show that the precession
angle has distinct features for each geometry such as naked singularity, black
string, and wormhole.Comment: 15 pages, 11 figure
Production and optical properties of liquid scintillator for the JSNS experiment
The JSNS (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron
Source) experiment will search for neutrino oscillations over a 24 m short
baseline at J-PARC. The JSNS inner detector will be filled with 17 tons
of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of
unloaded LS in the intermediate -catcher and outer veto volumes.
JSNS has chosen Linear Alkyl Benzene (LAB) as an organic solvent because
of its chemical properties. The unloaded LS was produced at a refurbished
facility, originally used for scintillator production by the RENO experiment.
JSNS plans to use ISO tanks for the storage and transportation of the LS.
In this paper, we describe the LS production, and present measurements of its
optical properties and long term stability. Our measurements show that storing
the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures
Moduli Dynamics of AdS_3 Strings
We construct a general class of solutions for a classical string in AdS_3
spacetime. The construction is based on a Pohlmeyer type reduction, with the
sinh-Gordon model providing the general N-soliton solutions. The corresponding
exact spiky string configurations are then reconstructed through the inverse
scattering method. It is shown that the string moduli are determined entirely
by those of the solitons.Comment: 22 pages, no figures; references adde
Particle Probe of Horava-Lifshitz Gravity
Kehagias-Sfetsos black hole in Ho\v{r}ava-Lifshitz gravity is probed through
particle geodesics. Gravitational force of KS black hole becomes weaker than
that of Schwarzschild around horizon and interior space. Particles can be
always scattered or trapped in new closed orbits, unlike those falling forever
in Schwarzschild black. The properties of null and timelike geodesics are
classified with values of coupling constants. The precession rates of the
orbits are evaluated. The time trajectories are also classified under different
values of coupling constants for both null and timelike geodesics. Physical
phenomena that may be observable are discussed.Comment: 10 pages, 8 figure
The Baryonic Phase in Holographic Descriptions of the QCD Phase Diagram
We study holographic models of the QCD temperature-chemical potential phase
diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic
phase may be included through linked D5-D7 systems. In a previous analysis of a
model with a running gauge coupling a baryonic phase was shown to exist to
arbitrarily large chemical potential. Here we explore this phase in a more
generic phenomenological setting with a step function dilaton profile. The
change in dilaton generates a linear confining potential and opposes
the screening effect of temperature. We show that the persistence of the
baryonic phase depends on the step size and that QCD-like phase diagrams can be
described. The baryonic phase's existence is qualitatively linked to the
existence of confinement in Wilson loop computations in the background.Comment: 21 pages, 7 figure
Wall-thickness-dependent strength of nanotubular ZnO
We fabricate nanotubular ZnO with wall thickness of 45, 92, 123 nm using nanoporous gold (np-Au) with ligament diameter at necks of 1.43 mu m as sacrificial template. Through micro-tensile and micro-compressive testing of nanotubular ZnO structures, we find that the exponent m in (sigma) over bar proportional to (rho) over bar (m), where (sigma) over bar is the relative strength and (rho) over bar is the relative density, for tension is 1.09 and for compression is 0.63. Both exponents are lower than the value of 1.5 in the Gibson-Ashby model that describes the relation between relative strength and relative density where the strength of constituent material is independent of external size, which indicates that strength of constituent ZnO increases as wall thickness decreases. We find, based on hole-nanoindentation and glazing incidence X-ray diffraction, that this wall-thickness-dependent strength of nanotubular ZnO is not caused by strengthening of constituent ZnO by size reduction at the nanoscale. Finite element analysis suggests that the wall-thickness-dependent strength of nanotubular ZnO originates from nanotubular structures formed on ligaments of np-Au
Semiclassical strings in AdS(3) X S^2
In this paper, we investigate the semiclassical strings in AdS(3)XS^2, in
which the string configuration of AdS(3) is classified to three cases depending
on the parameters. Each of these has a different anomalous dimension
proportional to logS, S^(1/3) and S, where S is a angular momentum on AdS(3).
Further we generalize the dispersion relations for various string configuration
on AdS(3)XS^2.Comment: 15 pages, added reference
- …
