24 research outputs found
Fuzzy fusion operators to combine results of complementary medical image segmentation techniques
The detection of masses and tumors in a mammogram is a difficult problem that could benefit from the use of multiple approaches. We propose an abstract concept of information fusion based on a finite automaton and fuzzy sets to integrate and evaluate results of multiple image segmentation procedures. We, give examples on how the method can be applied to the problem of mammographic image segmentation,. combining results of region growing and closed-contour detection techniques. We also propose a measure of fuzzyness to assess the agreement between a segmented region and a reference contour. Application of the fusion technique to breast tumor detection in mammograms indicates that the fusion results agree with the reference contours provided by a radiologist to a higher extent than the results of the individual methods. (C) 2003 SPIE and IST.12337938
Segmentation of breast tumors in mammograms using fuzzy sets
Defining criteria to determine precisely the boundaries of masses in mammograms is a difficult task. The problem is compounded by the fact that most malignant tumors possess fuzzy boundaries with a slow and extended transition from a dense core region to the surrounding less-dense tissues. We propose two segmentation methods that incorporate fuzzy concepts. The first method determines the boundary of a mass or tumor by region growing after a preprocessing step based on fuzzy sets to enhance the region of interest (ROI). Contours provided by the method have demonstrated a good match with the contours drawn by a radiologist, as indicated by good agreement between the two sets of contours for 47 mammograms. The second segmentation method is a fuzzy region-growing method that takes into account the uncertainty present around the boundaries of tumors. The difficult step of deciding on a crisp boundary is obviated in the proposed method. Measures of inhomogeneity computed from the pixels present in a suitably defined fuzzy ribbon have indicated potential use in classifying the masses and tumors as benign or malignant, with a sensitivity of 0.8 and a specificity of 0.9. (C) 2003 SPIE and IST.12336937
INDIAM—An e-Learning System for the Interpretation of Mammograms
We propose the design of a teaching system named Interpretation and Diagnosis of Mammograms (INDIAM) for training students in the interpretation of mammograms and diagnosis of breast cancer. The proposed system integrates an illustrated tutorial on radiology of the breast, that is, mammography, which uses education techniques to guide the user (doctors, students, or researchers) through various concepts related to the diagnosis of breast cancer. The user can obtain informative text about specific subjects, access a library of bibliographic references, and retrieve cases from a mammographic database that are similar to a query case on hand. The information of each case stored in the mammographic database includes the radiological findings, the clinical history, the lifestyle of the patient, and complementary exams. The breast cancer tutorial is linked to a module that simulates the analysis and diagnosis of a mammogram. The tutorial incorporates tools for helping the user to evaluate his or her knowledge about a specific subject by using the education system or by simulating a diagnosis with appropriate feedback in case of error. The system also makes available digital image processing tools that allow the user to draw the contour of a lesion, the contour of the breast, or identify a cluster of calcifications in a given mammogram. The contours provided by the user are submitted to the system for evaluation. The teaching system is integrated with AMDI—An Indexed Atlas of Digital Mammograms—that includes case studies, e-learning, and research systems. All the resources are accessible via the Web
Feature Extraction from a Signature Based on the Turning Angle Function for the Classification of Breast Tumors
Malignant breast tumors and benign masses appear in mammograms with different shape characteristics: the former usually have rough, spiculated, or microlobulated contours, whereas the latter commonly have smooth, round, oval, or macrolobulated contours. Features that characterize shape roughness and complexity can assist in distinguishing between malignant tumors and benign masses. Signatures of contours may be used to analyze their shapes. We propose to use a signature based on the turning angle function of contours of breast masses to derive features that capture the characteristics of shape roughness as described above. We propose methods to derive an index of the presence of convex regions (XR(TA)), an index of the presence of concave regions (VR(TA)), an index of convexity (CX(TA)), and two measures of fractal dimension (FD(TA) and FDd(TA)) from the turning angle function. The methods were tested with a set of 111 contours of 65 benign masses and 46 malignant tumors with different parameters. The best classification accuracies in discriminating between benign masses and malignant tumors, obtained for XR(TA), VR(TA), CX(TA), FD(TA), and FDd(TA) in terms of the area under the receiver operating characteristics curve, were 0.92, 0.92, 0.93, 0.93, and, 0.92, respectively
A new preprocessing filter for digital mammograms
This paper presents a computer-aided approach to enhancing suspicious lesions in digital mammograms. The developed algorithm improves on a well-known preprocessor filter named contrast-limited adaptive histogram equalization (CLAHE) to remove noise and intensity inhomogeneities. The proposed preprocessing filter, called fuzzy contrast-limited adaptive histogram equalization (FCLAHE), performs non-linear enhancement. The filter eliminates noise and intensity inhomogeneities in the background while retaining the natural gray level variations of mammographic images within suspicious lesions. We applied Catarious segmentation method (CSM) to compare the segmentation accuracy in two scenarios: when there is no preprocessing filter, and when the proposed preprocessing filter is applied to the original image. The proposed filter has been evaluated on 50 real mammographic images and the experimental results show an average increase of segmentation accuracy by 14.16% when the new filter is applied
POSTGRESQL-IE: An Image-handling Extension for PostgreSQL
The last decade witnessed a growing interest in research on content-based image retrieval (CBIR) and related areas. Several systems for managing and retrieving images have been proposed, each one tailored to a specific application. Functionalities commonly available in CBIR systems include: storage and management of complex data, development of feature extractors to support similarity queries, development of index structures to speed up image retrieval, and design and implementation of an intuitive graphical user interface tailored to each application. To facilitate the development of new CBIR systems, we propose an image-handling extension to the relational database management system (RDBMS) PostgreSQL. This extension, called PostgreSQL-IE, is independent of the application and provides the advantage of being open source and portable. The proposed system extends the functionalities of the structured query language SQL with new functions that are able to create new feature extraction procedures, new feature vectors as combinations of previously defined features, and new access methods, as well as to compose similarity queries. PostgreSQL-IE makes available a new image data type, which permits the association of various images with a given unique image attribute. This resource makes it possible to combine visual features of different images in the same feature vector. To validate the concepts and resources available in the proposed extended RDBMS, we propose a CBIR system applied to the analysis of mammograms using PostgreSQL-IE
