538 research outputs found

    Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    Get PDF
    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a<sup>−1</sup>, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a<sup>−1</sup>, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NO<sub>x</sub> ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a<sup>−1</sup>. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a<sup>−1</sup>) and anthropogenic emissions (2 Tg a<sup>−1</sup>). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NO<sub>x</sub>: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a<sup>−1</sup> and 7.8 Tg a<sup>−1</sup>, approximately 60{%} and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel

    Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America (2012), doi:10.1073/pnas.1110564109.Detailed airborne, surface, and subsurface chemical measurements, primarily obtained in May and June 2010, are used to quantify initial hydrocarbon compositions along different transport pathways – in deep subsurface plumes, in the initial surface slick, and in the atmosphere – during the Deepwater Horizon (DWH) oil spill. Atmospheric measurements are consistent with a limited area of surfacing oil, with implications for leaked hydrocarbon mass transport and oil drop size distributions. The chemical data further suggest relatively little variation in leaking hydrocarbon composition over time. While readily soluble hydrocarbons made up ~25% of the leaking mixture by mass, subsurface chemical data show these compounds made up ~69% of the deep plume mass; only ~31% of deep plume mass was initially transported in the form of trapped oil droplets. Mass flows along individual transport pathways are also derived from atmospheric and subsurface chemical data. Subsurface hydrocarbon composition, dissolved oxygen, and dispersant data are used to provide a new assessment of release of hydrocarbons from the leaking well. We use the chemical measurements to estimate that (7.8±1.9) x106 kg of hydrocarbons leaked on June 10, 2010, directly accounting for roughly three-quarters of the total leaked mass on that day. The average environmental release rate of (10.1 ± 2.0) x106 kg/day derived using atmospheric and subsurface chemical data agrees within uncertainties with the official average leak rate of (10.2 ± 1.0) x106 kg/day derived using physical and optical methods.This research was supported by the National Science Foundation through grants to D. Blake (AGS-1049952), J. Kessler (OCE-1042650 and OCE-0849246), D. Valentine (OCE-1042097 and OCE-0961725), E. Kujawinski (OCE-1045811), and R. Camilli (OCE-1043976), by U.S. Coast Guard contract to R. Camilli (Contract HSCG3210CR0020), and by U.S. Department of Energy grant to D. Valentine (DE- NT0005667). The August, September, and October research cruises were funded by NOAA through a contract with Consolidated Safety Services, Incorporated. The NOAA P-3 oil spill survey flights were funded in part by NOAA and in part by a U.S. Coast Guard Pollution Removal Funding Authorization to NOAA

    Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Get PDF
    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (<1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NO_x enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site

    Diagnosis of hepatocellular adenoma in men before onset of diabetes in HNF1A-MODY:Watch out for winkers

    Get PDF
    Hepatocyte nuclear factor 1A (HNF1A) maturity-onset diabetes of the young (MODY) is a monogenetic, autosomal dominantly inherited form of diabetes. HNF1A-MODY is associated with HNF1A-inactivated hepatocellular adenoma (H-HCA) formation. Hepatocellular adenoma (HCA) are benign liver tumours and related complications are rare but serious: hepatic haemorrhage and malignant transformation. Guidelines recommend resection of all HCA in men and do not take any co-occurring metabolic disorders into account. We report a family with HCA preceding diabetes mellitus. Male index patient presented with numerous, irresectable HCA. After initial diagnostic and aetiologic uncertainty HNF1A germline mutation c.815G>A (p.Arg272His) was confirmed 8 years later. No HCA-related complications occurred. His diabetic mother was diagnosed with HCA after severe hepatic haemorrhage years before. HNF1A-MODY should be considered in (non-)diabetic (male) patients with H-HCA. We advocate liver biopsy and, if necessary, genetic analysis to precede any intervention for HCA in males and screening for HCA in HNF1A-MODY patients

    On Models and Code:A Unified Approach to Support Large-Scale Deductive Program Verification

    Get PDF
    Despite the substantial progress in the area of deductive program verification over the last years, it still remains a challenge to use deductive verification on large-scale industrial applications. In this abstract, I analyse why this is case, and I argue that in order to solve this, we need to soften the border between models and code. This has two important advantages: (1) it would make it easier to reason about high-level behaviour of programs, using deductive verification, and (2) it would allow to reason about incomplete applications during the development process. I discuss how the first steps towards this goal are supported by verification techniques within the VerCors project, and I will sketch the future steps that are necessary to realise this goal

    Program Correctness by Transformation

    Get PDF
    Deductive program verification can be used effectively to verify high-level programs, but can be challenging for low-level, high-performance code. In this paper, we argue that compilation and program transformations should be made annotation-aware, i.e. during compilation and program transformation, not only the code should be changed, but also the corresponding annotations. As a result, if the original high-level program could be verified, also the resulting low-level program can be verified. We illustrate this approach on a concrete case, where loop annotations that capture possible loop parallelisations are translated into specifications of an OpenCL kernel that corresponds to the parallel loop. We also sketch how several commonly used OpenCL kernel transformations can be adapted to also transform the corresponding program annotations. Finally, we conclude the paper with a list of research challenges that need to be addressed to further develop this approach

    Observational constraints on the global atmospheric budget of ethanol

    Get PDF
    Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2) with itself and with the methyl peroxy radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel
    corecore