29 research outputs found
Comments on Half S-Branes
Following hep-th/0305177, we write the boundary state of half S-brane in
bosonic string theory as a grand canonical partition function of a unitary
matrix model. From this representation, it follows that the annulus amplitude
can be written as a grand canonical partition function of a unitary two-matrix
model. We also show that the contribution of the exponentially growing
couplings to the timelike oscillators can be resummed in a certain annulus
amplitude.Comment: 27 pages, lanlmac; v2: reference adde
Effects of macromolecular crowding on intracellular diffusion from a single particle perspective
Compared to biochemical reactions taking place in relatively well-defined aqueous solutions in vitro, the corresponding reactions happening in vivo occur in extremely complex environments containing only 60–70% water by volume, with the remainder consisting of an undefined array of bio-molecules. In a biological setting, such extremely complex and volume-occupied solution environments are termed ‘crowded’. Through a range of intermolecular forces and pseudo-forces, this complex background environment may cause biochemical reactions to behave differently to their in vitro counterparts. In this review, we seek to highlight how the complex background environment of the cell can affect the diffusion of substances within it. Engaging the subject from the perspective of a single particle’s motion, we place the focus of our review on two areas: (1) experimental procedures for conducting single particle tracking experiments within cells along with methods for extracting information from these experiments; (2) theoretical factors affecting the translational diffusion of single molecules within crowded two-dimensional membrane and three-dimensional solution environments. We conclude by discussing a number of recent publications relating to intracellular diffusion in light of the reviewed material
Membrane-mediated interactions
Interactions mediated by the cell membrane between inclusions, such as
membrane proteins or antimicrobial peptides, play important roles in their
biological activity. They also constitute a fascinating challenge for
physicists, since they test the boundaries of our understanding of
self-assembled lipid membranes, which are remarkable examples of
two-dimensional complex fluids. Inclusions can couple to various degrees of
freedom of the membrane, resulting in different types of interactions. In this
chapter, we review the membrane-mediated interactions that arise from direct
constraints imposed by inclusions on the shape of the membrane. These effects
are generic and do not depend on specific chemical interactions. Hence, they
can be studied using coarse-grained soft matter descriptions. We deal with
long-range membrane-mediated interactions due to the constraints imposed by
inclusions on membrane curvature and on its fluctuations. We also discuss the
shorter-range interactions that arise from the constraints on membrane
thickness imposed by inclusions presenting a hydrophobic mismatch with the
membrane.Comment: 38 pages, 10 figures, pre-submission version. In: Bassereau P., Sens
P. (eds) Physics of Biological Membranes. Springer, Cha