155 research outputs found

    Graviton Loop Corrections to Vacuum Polarization in de Sitter in a General Covariant Gauge

    Full text link
    We evaluate the one-graviton loop contribution to the vacuum polarization on de Sitter background in a 1-parameter family of exact, de Sitter invariant gauges. Our result is computed using dimensional regularization and fully renormalized with BPHZ counterterms, which must include a noninvariant owing to the time-ordered interactions. Because the graviton propagator engenders a physical breaking of de Sitter invariance two structure functions are needed to express the result. In addition to its relevance for the gauge issue this is the first time a covariant gauge graviton propagator has been used to compute a noncoincident loop. A number of identities are derived which should facilitate further graviton loop computations.Comment: 61 pages, 1 figure, 11 tables, version 2 (63 pages) revised for publication in CQ

    Graviton Propagator in a 2-Parameter Family of de Sitter Breaking Gauges

    Full text link
    We formulate the graviton propagator on de Sitter background in a 2-parameter family of simple gauges which break de Sitter invariance. Explicit results are derived for the first order perturbations in each parameter. These results should be useful in computations to check for gauge dependence of graviton loop corrections.Comment: 23 pages, 1 table, uses LaTeX2e, version 2 slightly revised for publicatio

    One-loop Graviton Corrections to Conformal Scalars on a de Sitter Background

    Full text link
    We exploit a recent computation of one graviton loop corrections to the self-mass [1] to quantum-correct the field equation for a massless, conformally coupled scalar on a de Sitter background. With the obvious choice for the finite part of the R2ϕ2R^2 \phi^2 counterterm, we find that neither plane wave mode functions nor the response to a point source acquires large infrared logarithms. However, we do find a decaying logarithmic correction to the mode function and a short distance logarithmic running of the potential in addition to the power-law effect inherited from flat space.Comment: 25 pages, 2 figures; published versio

    Explaining Large Electromagnetic Logarithms from Loops of Inflationary Gravitons

    Full text link
    Recent progress on nonlinear sigma models on de Sitter background has permitted the resummation of large inflationary logarithms by combining a variant of Starobinsky's stochastic formalism with a variant of the renormalization group. We reconsider single graviton loop corrections to the photon wave function, and to the Coulomb potential, in light of these developments. Neither of the two 1-loop results have a stochastic explanation, however, the flow of a curvature-dependent field strength renormalization explains their factors of ln(a)\ln(a). We speculate that the factor of ln(Hr)\ln(Hr) in the Coulomb potential should not be considered as a leading logarithm effect.Comment: 22 pages, uses LaTeX2e, slightly revised for publicatio
    corecore