31 research outputs found

    Gene mobility and the concept of relatedness

    Get PDF
    Cooperation is rife in the microbial world, yet our best current theories of the evolution of cooperation were developed with multicellular animals in mind. Hamilton’s theory of inclusive fitness is an important case in point: applying the theory in a microbial setting is far from straightforward, as social evolution in microbes has a number of distinctive features that the theory was never intended to capture. In this article, I focus on the conceptual challenges posed by the project of extending Hamilton's theory to accommodate the effects of gene mobility. I begin by outlining the basics of the theory of inclusive fitness, emphasizing the role that the concept of relatedness is intended to play. I then provide a brief history of this concept, showing how, over the past fifty years, it has departed from the intuitive notion of genealogical kinship to encompass a range of generalized measures of genetic similarity. I proceed to argue that gene mobility forces a further revision of the concept. The reason in short is that, when the genes implicated in producing social behaviour are mobile, we cannot talk of an organism’s genotype simpliciter; we can talk only of an organism's genotype at a particular stage in its life cycle. We must therefore ask: with respect to which stage(s) in the life cycle should relatedness be evaluated? For instance: is it genetic similarity at the time of social interaction that matters to the evolution of social behaviour, or is it genetic similarity at the time of reproduction? I argue that, strictly speaking, it is neither of these: what really matters to the evolution of social behaviour is diachronic genetic similarity between the producers of fitness benefits at the time they produce them and the recipients of those benefits at the end of their life-cycle. I close by discussing the implications of this result. The main payoff is that it makes room for a possible new mechanism for the evolution of altruism in microbes that does not require correlated interaction among bearers of the genes for altruism. The importance of this mechanism in nature remains an open empirical question

    Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue.

    No full text
    Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics
    corecore