127 research outputs found

    Scaling laws for ion irradiation effects in iron-based superconductors

    Get PDF
    We report on ion irradiation experiments performed on compounds belonging to the BaFe 2As 2 family, each one involving the partial substitution of an atom of the parent compound (K for Ba, Co for Fe, and P for As), with an optimal composition to maximize the superconducting critical temperature Tc. Employed ion beams were 3.5-MeV protons, 250-MeV Au ions, and 1.2-GeV Pb ions, but additional data from literature are also considered, thus covering a wide range of ions and energies. Microwave characterization based on the use of a coplanar waveguide resonator allowed us to investigate the irradiation-induced Tc degradation, as well as the increase of normal state resistivity and London penetration depth. The damage was quantified in terms of displacements per atom (dpa). From this broad and comprehensive set of experimental data, clear scaling laws emerge, valid in the range of moderate irradiation-induced disorder (dpa up to 5 Ɨ 10 - 3 were investigated). In these conditions, linear trends with dpa were found for all the modification rates, while a power law dependence on the ion energy was found for heavy-ion irradiation. All these scaling laws are reported and discussed throughout the paper

    Magneto-plasmonic heterodimers: Evaluation of different synthesis approaches

    Get PDF
    Nanomedicine has gained huge attention in recent years with new approaches in medical diagnosis and therapy. Particular consideration has been devoted to the nanoparticles (NPs) in theranostic field with specific interest for magnetic and gold NPs (MNPs and GNPs) due to their peculiar properties under exposition to electromagnetic fields. In this paper, we aim to develop magneto-plasmonic heterodimer by combining MNPs and GNPs through a facile and reproducible synthesis and to investigate the influence of different synthesis parameters on their response to magnetic and optical stimuli. In particular, various syntheses were performed by changing the functionalization step and using or not a reducing agent to obtain stable NP suspensions with tailored properties. The obtained heterodimers were characterized through physical, chemical, optical, and magnetic analysis, in order to evaluate their size, shape, plasmonic properties, and superparamagnetic behavior. The results revealed that the shape and dimensions of the nanocomposites can be tuned by MNPs surface functionalization, as well as by the use of a reducing agent, giving rise to nanoplatform suitable for biomedical application, exploiting the gold absorbing peak in the specific gold absorbing range of GNPs, while maintaining the superparamagnetic behavior typical of the MNPs. The obtained nanocomposites can be proposed as potential candidates for cancer theranostics

    Twofold role of columnar defects in iron based superconductors

    Get PDF
    We report on the introduction of columnar defects in Ba1āˆ’x K x Fe2As2 and BaFe2(As1āˆ’x P x )2 single crystals via 1.2 GeV Pb irradiation. Scanning transmission electron microscopy analysis proves the formation of continuous defects along the ion tracks, with a diameter of about 3 nm, and a planar density compatible with the irradiation fluence. The twofold role of such defects, i.e. as pair breakers as well as pinning centers, is investigated by a microwave technique, allowing us to determine critical temperature T c , surface impedance and penetration depth Ī» L , and by magneto-optical imaging and superconducting quantum interference device magnetometry to evaluate the critical current density J c . The decrease of T c is quite modest and, together with Ī» L modifications, testifies the increase of pair-breaking scattering following irradiation. The dependence of J c on irradiation dose and temperature is due to the pinning landscape induced by the columnar defects, and shows the existence of an optimal irradiation dose to enhance the critical current

    Effective gap at microwave frequencies in MgB2 thin films with strong interband scattering

    Full text link
    The microwave properties of polycrystalline MgB2 thin films prepared by the so-called in-situ method are investigated. The characterization of the films at microwave frequencies was obtained by a coplanar resonator technique. The analysis of the experimental data results in the determination of penetration depth, surface impedance and complex conductivity. The aim of this work is to set the experimental results in a consistent framework, involving the two-band model in the presence of impurity scattering. The energy gaps are calculated and the contribution of intra- and inter-band scattering is considered. From the comparison between the calculated gap values and the experimental data it turns out that the temperature dependence of the penetration depth can be accounted for by an effective mean energy gap, in agreement with the predictions of Kogan et al. [Phys. Rev. B 69, 132506 (2004)]. On the other hand, the temperature dependence of the real part of the microwave conductivity and of the surface resistance is accounted for by the single smaller gap, in agreement with the work of Jin et al. [Phys. Rev. Lett. 91, 127006 (2003)]. Since these findings rely on the same calculated gap structure, the required consistency is fulfilled.Comment: 24 pages, 9 figures. Phys. Rev. B, in pres

    Tuning the Intrinsic Anisotropy with Disorder in the CaKFe4As4 Superconductor

    Get PDF
    We report on the anisotropy of the London penetration depth of CaKFe 4 As 4 , discussing how it relates to its electronic structure and how it modifies under introduction of disorder, both chemically induced (by Ni substitution) and irradiation induced (by 3.5-MeV protons). Indeed, CaKFe 4 As 4 is particularly suitable for the study of fundamental superconducting properties due to its stoichiometric composition, exhibiting clean-limit behavior in the pristine samples and having a fairly high critical temperature, T c ā‰ˆ 35 K. The London penetration depth Ī» L is measured with a microwave-coplanar-resonator technique that allows us to deconvolve the anisotropic contributions Ī» L,ab and Ī» L,c and obtain the anisotropy parameter Ī³ Ī» = Ī» L,c /Ī» L,ab . The Ī³ Ī» (T) found for the undoped pristine sample is in good agreement with previous literature and is here compared to ab initio density-functional-theory and Eliashberg calculations. The dependence of Ī³ Ī» (T) on both chemical and irradiation-induced disorder is discussed to highlight which method is more suitable to decrease the direction dependence of the electromagnetic properties while maintaining a high critical temperature. Lastly, the relevance of an intrinsic anisotropy such as Ī³ Ī» on application- related anisotropic parameters (critical current, pinning) is discussed in light of the recent employment of CaKFe 4 As 4 in the production of wires

    A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam

    Full text link
    The paper reports on a high precision equipment designed to modify over 3-dimensions (3D) by means of high-energy gold ions the local properties of thin and thick films. A target-moving system aimed at creating patterns across the volume is driven by an x-y writing protocol that allows one to modify beam sensitive samples over micrometer-size regions of whatever shape. The apparatus has a mechanical resolution of 15 nm. The issue of the local fluence measurement has been particularly addressed. The setup has been checked by means of different geometries patterned on beam sensitive sheets as well as on superconducting materials. In the last case the 3D modification consists of amorphous nanostructures. The nanostructures create zones with different dissipative properties with respect to the virgin regions. The main analysis method consists of magneto-optical imaging that provides local information on the electrodynamics of the modified zones. Features typical of non-linear current flow hint at which pattern geometry is more functional to applications in the framework of nanostructures across superconducting films.Comment: 7 page

    Cobalt-Based Metallic Glass Microfibers for Flexible Electromagnetic Shielding and Soft Magnetic Properties

    Get PDF
    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, particularly those that can be rapidly processed and withstand harsh environments. Cobalt-based metallic glasses stand out as prime candidates due to their excellent soft magnetic properties, satisfactory shielding features, and mechanical properties. Herein, a recently developed technique is used to fabricate metallic glass microfibers from Co66Fe4Mo2Si16B12 alloy. The produced microfibers are characterized for their size and uniformity by scanning electron microscopy and their amorphous structure is confirmed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The cobalt-based metallic glass microfibers show an EMI shielding factor that reaches five in the static regime and obtains an up to 25-fold increase of the attenuation constant in the Ku frequency band. This performance originates from the combination of soft magnetic properties and excellent electrical conductivity. In addition, the flexible microfibers exhibit excellent hardness and elasticity making them suitable for EMI shielding of complex geometries. Their hardness and elastic modulus are measured by nanoindentation to be 11.31 +/- 0.60 GPa, and 110.54 +/- 11.24 GPa, respectively.A novel method is used to fabricate flexible Co66Fe4Mo2Si16B12 metallic-glass microfibers for electronics, boasting a hardness of 11.31 +/- 0.60 GPa and an elastic modulus of 110.54 +/- 11.24 GPa. Their EMI shielding exhibits clear anisotropy with a factor of 5 and up to 25-fold increased attenuation in the Ku band. These properties position them well for EMI shielding in intricate geometries.imag

    Soft Magnetic Properties and Electromagnetic Shielding Performance of Fe40Ni40B20 Microfibers

    Get PDF
    Fi(40)Ni(40)B(20) metallic glass is a key material among the many amorphous systems investigated thus far, owing to its high strength and appealing soft magnetic properties that make it suitable for use as transformer cores. In this study, Fi(40)Ni(40)B(20) microfibers are fabricated down to 5 mu m diameter. Three different melt-spinning wheel velocities: approximate to 51 m s(-1), approximate to 59 m s(-1), and approximate to 63 m s(-1) (MG1, MG2, MG3) are used. Their fully amorphous structure is confirmed using X-ray diffraction, and differential scanning calorimetry (DSC) traces reveal a larger relaxation profile for the higher-quenched microfiber. Vibrating sample magnetometer measurements showed a higher saturation magnetization of 136 emug(-1) for annealed metallic glass microfibers with a wheel velocity of 59.66 ms(-1). Cylindrical magnetic field shields are obtained by aligning and wrapping the fibers around a cast. The observed anisotropic static field shielding behavior is in accordance with the microfibers' anisotropic nature. Composite samples are also produced by embedding the microfibers in an epoxy matrix to investigate their electromagnetic properties at GHz frequencies. Inclusion of the microfibers increase the composite's attenuation constant by 20 to 25 times, making it an ideal candidate for applications in the communications frequency range

    Nanostructuring of high-TC superconductors into micro-sized zones

    Get PDF
    A special apparatus was designed in order to ā€œwriteā€, with nanometric resolution, microsizeā€confined nanostructures in oxide samples. The nanostructures are produced by high energy heavy ion irradiation that allows nanostructuring the sample over its full thickness. The properties of the nanostructured areas can be further modulated by choosing the proper energy and fluence of the incoming ion beam. We present this setā€up and different kinds of nanostructured patterns created on high temperature superconducting films. We used the magnetoā€optical analysis to directly show the effect of the confined nanostructures on the micron scale. The confined nanostructured area, embedded in the virgin matrix, is demonstrated to be a fruitful element for designing a new class of devices
    • ā€¦
    corecore