5,751 research outputs found
Pacman percolation: a model for enzyme gel degradation
We study a model for the gel degradation by an enzyme, where the gel is
schematized as a cubic lattice, and the enzyme as a random walker, that cuts
the bonds over which it passes. The model undergoes a (reverse) percolation
transition, which for low density of enzymes falls in a universality class
different from random percolation. In particular we have measured a gel
fraction critical exponent beta=1.0+-0.1, in excellent agreement with
experiments made on the real system.Comment: 4 pages, 7 eps figure
Theory of photoferroelectric response in SmC* liquids
We are concerned with the modification of liquid crystalline and polar order
in SmC* liquids by illumination. In particular we show that non-uniformity due
to absorption and also dynamics, can be complex. The variation of polarization
with temperature, while illuminated, is modified from that assuming uniformity.
Apparent changes of polarization with illumination will be shown to be
underestimated due to non-uniformity. The dynamics is shown to depend on
propagating fronts of photo-conversion penetrating the sample.Comment: 6 pages, 7 figure
Probing viscoelastic properties of a thin polymer film sheared between a beads layer and quartz crystal resonator
We report measurements of viscoelastic properties of thin polymer films of
10-100 nm at the MHz range. These thin films are confined between a quartz
crystal resonator and a millimetric bead layer, producing an increase of both
resonance frequency and dissipation of the quartz resonator. The shear modulus
and dynamic viscosity of thin films extracted from these measurements are
consistent with the bulk values of the polymer. This modified quartz resonator
provides an easily realizable and effective tool for probing the rheological
properties of thin films at ambient environment.Comment: submitted to ap
Topological Constraints at the Theta Point: Closed Loops at Two Loops
We map the problem of self-avoiding random walks in a Theta solvent with a
chemical potential for writhe to the three-dimensional symmetric
U(N)-Chern-Simons theory as N goes to 0. We find a new scaling regime of
topologically constrained polymers, with critical exponents that depend on the
chemical potential for writhe, which gives way to a fluctuation-induced
first-order transition.Comment: 5 pages, RevTeX, typo
Substrate Adhesion of a Nongrafted Flexible Polymer in a Cavity
In a contact density chain-growth study we investigate the
solubility-temperature pseudo-phase diagram of a lattice polymer in a cavity
with an attractive surface. In addition to the main phases of adsorbed and
desorbed conformations we find numerous subphases of collapsed and expanded
structures.Comment: 20 pages, 6 figure
Untwisting of a cholesteric elastomer by a mechanical field
A mechanical strain field applied to a monodomain cholesteric elastomer will
unwind the helical director distribution. There is an analogy with the
classical problem of an electric field applied to a cholesteric liquid crystal,
but with important differences. Frank elasticity is of minor importance unless
the gel is very weak. The interplay is between director anchoring to the rubber
elastic matrix and the external mechanical field. Stretching perpendicular to
the helix axis induces the uniform unwound state via the elimination of sharp,
pinned twist walls above a critical strain. Unwinding through conical director
states occurs when the elastomer is stretched along the helical axis.Comment: 4 pages, RevTeX 3 style, 3 EPS figure
Thermodynamics of Blue Phases In Electric Fields
We present extensive numerical studies to determine the phase diagrams of
cubic and hexagonal blue phases in an electric field. We confirm the earlier
prediction that hexagonal phases, both 2 and 3 dimensional, are stabilized by a
field, but we significantly refine the phase boundaries, which were previously
estimated by means of a semi-analytical approximation. In particular, our
simulations show that the blue phase I -- blue phase II transition at fixed
chirality is largely unaffected by electric field, as observed experimentally.Comment: submitted to Physical Review E, 7 pages (excluding figures), 12
figure
On the orientational ordering of long rods on a lattice
We argue that a system of straight rigid rods of length k on square lattice
with only hard-core interactions shows two phase transitions as a function of
density, rho, for k >= 7. The system undergoes a phase transition from the
low-density disordered phase to a nematic phase as rho is increased from 0, at
rho = rho_c1, and then again undergoes a reentrant phase transition from the
nematic phase to a disordered phase at rho = rho_c2 < 1.Comment: epl.cl
Splitting of Surface Plasmon Frequencies of Metal Particles in a Nematic Liquid Crystal
We calculate the effective dielectric function for a suspension of small
metallic particles immersed in a nematic liquid crystal (NLC) host. For a
random suspension of such particles in the dilute limit, we calculate the
effective dielectric tensor exactly and show that the surface plasmon
(SP)resonance of such particles splits into two resonances, polarized parallel
and perpendicular to the NLC director. At higher concentrations, we calculate
this splitting using a generalized Maxwell-Garnett approximation, which can
also be applied to a small metal particle coated with NLC. To confirm the
accuracy of the MGA for NLC-coated spheres, we also use the Discrete Dipole
Approximation. The calculated splitting is comparable to that observed in
recent experiments on NLC-coated small metal particlesComment: 11 pages, 2 figures. To be published in Appl. Phys. Let
Drift and trapping in biased diffusion on disordered lattices
We reexamine the theory of transition from drift to no-drift in biased
diffusion on percolation networks. We argue that for the bias field B equal to
the critical value B_c, the average velocity at large times t decreases to zero
as 1/log(t). For B < B_c, the time required to reach the steady-state velocity
diverges as exp(const/|B_c-B|). We propose an extrapolation form that describes
the behavior of average velocity as a function of time at intermediate time
scales. This form is found to have a very good agreement with the results of
extensive Monte Carlo simulations on a 3-dimensional site-percolation network
and moderate bias.Comment: 4 pages, RevTex, 3 figures, To appear in International Journal of
Modern Physics C, vol.
- …
