We map the problem of self-avoiding random walks in a Theta solvent with a
chemical potential for writhe to the three-dimensional symmetric
U(N)-Chern-Simons theory as N goes to 0. We find a new scaling regime of
topologically constrained polymers, with critical exponents that depend on the
chemical potential for writhe, which gives way to a fluctuation-induced
first-order transition.Comment: 5 pages, RevTeX, typo