137 research outputs found

    Controlled Exchange of Chromosomal Arms Reveals Principles Driving Telomere Interactions in Yeast

    Get PDF
    The 32 telomeres in the budding yeast genome cluster in three to seven perinuclear foci. Although individual telomeres and telomeric foci are in constant motion, preferential juxtaposition of some telomeres has been scored. To examine the principles that guide such long-range interactions, we differentially tagged pairs of chromosome ends and developed an automated three-dimensional measuring tool that determines distances between two telomeres. In yeast, all chromosomal ends terminate in TG13 TG _{ 1-3 } and middle repetitive elements, yet subgroups of telomeres also share extensive homology in subtelomeric coding domains. We find that up to 21 kb of >90% sequence identity does not promote telomere pairing in interphase cells. To test whether unique sequence elements, arm length, or chromosome territories influence juxtaposition, we reciprocally swapped terminal domains or entire chromosomal arms from one chromosome to another. We find that the distal 10 kb of Tel6R promotes interaction with Tel6L, yet only when the two telomeres are present on the same chromosome. By manipulating the length and sequence composition of the right arm of chr 5, we confirm that contact between telomeres on opposite chromatid arms of equal length is favored. These results can be explained by the polarized Rabl arrangement of yeast centromeres and telomeres, which promote to telomere pairing by allowing contact between chromosome arms of equal length in anaphase

    Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes

    Get PDF
    Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.Comment: Open Access article available at http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035

    3D reconstruction and comparison of shapes of DNA minicircles observed by cryo-electron microscopy

    Get PDF
    We use cryo-electron microscopy to compare 3D shapes of 158 bp long DNA minicircles that differ only in the sequence within an 18 bp block containing either a TATA box or a catabolite activator protein binding site. We present a sorting algorithm that correlates the reconstructed shapes and groups them into distinct categories. We conclude that the presence of the TATA box sequence, which is believed to be easily bent, does not significantly affect the observed shapes

    Nucleoporin Mediated Nuclear Positioning and Silencing of HMR

    Get PDF
    The organization of chromatin domains in the nucleus is an important factor in gene regulation. In eukaryotic nuclei, transcriptionally silenced chromatin clusters at the nuclear periphery while transcriptionally poised chromatin resides in the nuclear interior. Recent studies suggest that nuclear pore proteins (NUPs) recruit loci to nuclear pores to aid in insulation of genes from silencing and during gene activation. We investigated the role of NUPs at a native yeast insulator and show that while NUPs localize to the native tDNA insulator adjacent to the silenced HMR domain, loss of pore proteins does not compromise insulation. Surprisingly we find that NUPs contribute to silencing at HMR and are able to restore silencing to a silencing-defective HMR allele when tethered to the locus. We show that the perinuclear positioning of heterochromatin is important for the NUP-mediated silencing effect and find that loss of NUPs result in decreased localization of HMR to the nuclear periphery. We also show that loss of telomeric tethering pathways does not eliminate NUP localization to HMR, suggesting that NUPs may mediate an independent pathway for HMR association with the nuclear periphery. We propose that localization of NUPs to the tDNA insulator at HMR helps maintain the intranuclear position of the silent locus, which in turn contributes to the fidelity of silencing at HMR

    Targeted Sister Chromatid Cohesion by Sir2

    Get PDF
    The protein complex known as cohesin binds pericentric regions and other sites of eukaryotic genomes to mediate cohesion of sister chromatids. In budding yeast Saccharomyces cerevisiae, cohesin also binds silent chromatin, a repressive chromatin structure that functionally resembles heterochromatin of higher eukaryotes. We developed a protein-targeting assay to investigate the mechanistic basis for cohesion of silent chromatin domains. Individual silencing factors were tethered to sites where pairing of sister chromatids could be evaluated by fluorescence microscopy. We report that the evolutionarily conserved Sir2 histone deacetylase, an essential silent chromatin component, was both necessary and sufficient for cohesion. The cohesin genes were required, but the Sir2 deacetylase activity and other silencing factors were not. Binding of cohesin to silent chromatin was achieved with a small carboxyl terminal fragment of Sir2. Taken together, these data define a unique role for Sir2 in cohesion of silent chromatin that is distinct from the enzyme's role as a histone deacetylase

    Using human artificial chromosomes to study centromere assembly and function

    Get PDF

    Chromatin compaction in terminally differentiated avian blood cells: the role of linker histone H5 and non-histone protein MENT

    Get PDF
    Chromatin has a tendency to shift from a relatively decondensed (active) to condensed (inactive) state during cell differentiation due to interactions of specific architectural and/or regulatory proteins with DNA. A promotion of chromatin folding in terminally differentiated avian blood cells requires the presence of either histone H5 in erythrocytes or non-histone protein, myeloid and erythroid nuclear termination stage-specific protein (MENT), in white blood cells (lymphocytes and granulocytes). These highly abundant proteins assist in folding of nucleosome arrays and self-association of chromatin fibers into compacted chromatin structures. Here, we briefly review structural aspects and molecular mode of action by which these unrelated proteins can spread condensed chromatin to form inactivated regions in the genome

    Infrared thermography for convective heat transfer measurements

    Get PDF
    corecore