1,007 research outputs found

    A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    Get PDF
    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit

    Potent and Selective Peptide-based Inhibition of the G Protein Gαq

    Get PDF
    In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells

    Identification of G α 11 as the phospholipase C-activating G-protein of turkey erythrocytes

    Get PDF
    A 43 kDa phospholipase C-activating protein has been purified previously from turkey erythrocytes and shown to express immunological properties expected of that of the Gq family of G-protein alpha-subunits [Waldo, Boyer, Morris and Harden (1991) J. Biol. Chem. 266, 14217-14225]. Internal amino acid sequence has now been obtained from this protein which shares 50-100% sequence identity with sequences encoded by mammalian G alpha 11 and G alpha q cDNAs. To identify the purified protein unambiguously, it was necessary to compare its amino acid sequence with the sequence encoded by avian G-protein alpha-subunit cDNA. As such, mouse G alpha q was used as a probe to screen turkey brain and fetal-turkey blood cDNA libraries. A full-length cDNA was identified that encodes avian G alpha 11, on the basis of its 96-98% amino acid identity with mammalian G alpha 11. All eight peptides sequenced from the turkey erythrocyte phospholipase C-activating protein are completely contained within the deduced amino acid sequence of the avian G alpha 11 cDNA. Expression of this cDNA in Sf9 cells by using a baculovirus expression system resulted in the production of a 43 kDa protein that reacts strongly with antisera to the Gq family of G-protein alpha-subunits and activated purified avian phospholipase C in an AlF4(-)-dependent manner. Taken together, these results unambiguously identify the protein purified from turkey erythrocytes, on the basis of its capacity to activate avian phospholipase C, as G alpha 11

    URBAN TERRAIN CLIMATOLOGY AND REMOTE SENSING *

    Full text link
    . Urban areas have been conceived of as monolithic heat islands because traditional ground observation techniques do not lend themselves to more specific analyses. Observations of urban energy-exchange obtained from calibrated electro-optical scanners combined with energy budget simulation techniques provide tools to relate the urban land use mosaic to the heat island phenomenon. Maps of surface energy-related phenomena were made from airborne scanner outputs for selected flightpaths across the city of Baltimore, Maryland. Conditions for the flight time were simulated according to the various types of land use using an energy budget simulation model which lends itself to extrapolation of simulated grid-point conditions into a map form. Maps made by simulation compare sufficiently well with those made by aerial observation to encourage further refinement of the simulation approach.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72392/1/j.1467-8306.1976.tb01110.x.pd

    New Molecular Reporters for Rapid Protein Folding Assays

    Get PDF
    The GFP folding reporter assay [1] uses a C-terminal GFP fusion to report on the folding success of upstream fused polypeptides. The GFP folding assay is widely-used for screening protein variants with improved folding and solubility [2]–[8], but truncation artifacts may arise during evolution, i.e. from de novo internal ribosome entry sites [9]. One way to reduce such artifacts would be to insert target genes within the scaffolding of GFP circular permuted variants. Circular permutants of fluorescent proteins often misfold and are non-fluorescent, and do not readily tolerate fused polypeptides within the fluorescent protein scaffolding [10]–[12]. To overcome these limitations, and to increase the dynamic range for reporting on protein misfolding, we have created eight GFP insertion reporters with different sensitivities to protein misfolding using chimeras of two previously described GFP variants, the GFP folding reporter [1] and the robustly-folding “superfolder” GFP [13]. We applied this technology to engineer soluble variants of Rv0113, a protein from Mycobacterium tuberculosis initially expressed as inclusion bodies in Escherichia coli. Using GFP insertion reporters with increasing stringency for each cycle of mutagenesis and selection led to a variant that produced large amounts of soluble protein at 37°C in Escherichia coli. The new reporter constructs discriminate against truncation artifacts previously isolated during directed evolution of Rv0113 using the original C-terminal GFP folding reporter. Using GFP insertion reporters with variable stringency should prove useful for engineering protein variants with improved folding and solubility, while reducing the number of artifacts arising from internal cryptic ribosome initiation sites

    3-D struktura serumske paraoksonaze 1 objašnjava njezinu aktivnost, stabilnost, topljivost i kristalizaciju

    Get PDF
    Serum paraoxonases (PONs) exhibit a wide range of physiologically important hydrolytic activities, including drug metabolism and detoxification of nerve gases. PON1 and PON3 reside on high-density lipoprotein (HDL) (the “good cholesterol”), and are involved in the alleviation of atherosclerosis. Members of the PON family have been identified not only in mammals and other vertebrates, but also in invertebrates. We earlier described the first crystal structure of a PON family member, a directly-evolved variant of PON1, at 2.2 Å resolution. PON1 is a 6-bladed beta-propeller with a unique active-site lid which is also involved in binding to HDL. The 3-D structure, taken together with directed evolution studies, permitted analysis of mutations which enhanced the stability, solubility and crystallizability of this PON1 variant. The structure permits a detailed description of PON1’s active site and suggests possible mechanisms for its catalytic activity on certain substrates.Serumske paraoksonaze (PONs) imaju široki raspon fiziološki važnih hidrolitičkih aktivnosti uključujući metabolizam lijekova i detoksikaciju nervnih plinova. PON1 i PON3 smještene su na lipoproteinima visoke gustoće (engl. high-density lipoprotein; HDL - “dobri kolesterol”) i uključene su u ublažavanje ateroskleroze. Članovi skupine PON identificirani su ne samo u sisavaca i drugih kralježnjaka već i kod beskralješnjaka. Prije smo opisali prvu kristalnu strukturu člana PON skupine, direktno razrađenu varijantu PON1 pri rezoluciji 2,2 Å. PON1 je beta-propeler sa šest lopatica s jedinstvenim poklopcem aktivnog mjesta, koji je tako|er uključen u vezanje na HDL. 3-D struktura, gledana zajedno s direktnim razvojnim istraživanjima, omogućila je analizu mutacija koje povećavaju stabilnost, topljivost i kristalizaciju te PON1 varijante. Struktura dopušta detaljan opis aktivnog mjesta PON1 i sugerira moguće mehanizme za njezinu katalitičku aktivnost prema odre|enim supstratima

    Towards the Construction of Expressed Proteomes Using a Leishmania tarentolae Based Cell-Free Expression System

    Get PDF
    The adaptation of organisms to a parasitic life style is often accompanied by the emergence of novel biochemical pathways absent in free-living organisms. As a result, the genomes of specialized parasitic organisms often code for a large number (>50%) of proteins with no detectable homology or predictable function. Although understanding the biochemical properties of these proteins and their roles in parasite biogenesis is the next challenge of molecular parasitology, analysis tools developed for free-living organisms are often inadequate for this purpose. Here we attempt to solve some of these problems by developing a methodology for the rapid production of expressed proteomes in cell-free systems based on parasitic organisms. To do so we take advantage of Species Independent Translational Sequences (SITS), which can efficiently mediate translation initiation in any organism. Using these sequences we developed a single-tube in vitro translation system based on the parasitic protozoan Leishmania tarentolae. We demonstrate that the system can be primed directly with SITS containing templates constructed by overlap extension PCR. To test the systems we simultaneously amplified 31 of L. tarentolae's putative translation initiation factors and phosphatases directly from the genomic DNA and subjected them to expression, purification and activity analysis. All of the amplified products produced soluble recombinant proteins, and putative phosphatases could be purified to at least 50% purity in one step. We further compared the ability of L. tarentolae and E. coli based cell-free systems to express a set of mammalian, L. tarentolae and Plasmodium falciparum Rab GTPases in functional form. We demonstrate that the L. tarentolae cell-free system consistently produced higher quality proteins than E. coli-based system. The differences were particularly pronounced in the case of open reading frames derived from P. falciparum. The implications of these developments are discussed

    Thermochemical sulfate reduction in fossil Ordovician deposits of the Majiang area: Evidence from a molecular-marker investigation

    Get PDF
    The main reservoirs of Majiang fossil deposits consist of the Silurian Wengxiang group, dominantly sandstones, and the Ordovician Honghuayuan formation, dominantly carbonate rocks, and the Lower Cambrian Niutitang Formation mudstones serve as the major source rocks. Thermochemical sulfate reduction (TSR) might have taken place in the Paleozoic marine carbonate oil pools, as indicated by high concentrations of dibenzothiophenes in the extracts (MDBT=0.27-4.32 µg/g extract, and MDBT/MPH= 0.71-1.38). Hydrocarbons in the Pojiaozhai Ordovician carbonate reservoirs have undergone severe TSR and are characterized by higher quantities of diamondoids and MDBT and heavier isotopic values (δ13C=-28.4‰). The very large amounts of dibenzothiophenes might be products of reactions between biphenyls and sulfur species associated with TSR
    corecore