12,265 research outputs found
An overview of the demonstration advanced avionics system guest pilot evaluation conducted at Ames Research Center
The guest pilot flight evaluation of the Demonstration Advanced Avionics System (DAAS) is discussed. The results are based on the fifty-nine questionnaires that were completed by the participants. The primary purpose of the pilot evaluation was to expose the Demonstration Advanced Avionics System to the various segments of the general aviation community and solicit comments in order to determine the effectiveness of integrated avionics for general aviation. Segments of the community that were represented in the evaluation are listed. A total of sixty-four (64) flights were conducted in which one hundred and seventeen (117) pilots and observers participated. It was felt that the exposure each subject had with the DAAS was too short to adequately assess the training requirements, pilot workload, and the reconfiguration concept of the DAAS. It is recommended that an operational evaluation of the DAAS be made to assess: the training requirements or varying experience levels, the pilot workload in the ATC environment with unplanned route changes, and the viability of the reconfiguration concept for failures
A flight-test evaluation of a go-around control system for a twin engine powered-lift STOL airplane
An automatic go-around control system was evaluated on the Augmentor Wing Jet Short Takeoff and Landing (STOL) Research Airplane (AWJSRA) as part of a study of an automatic landing system for a powered-lift STOL airplane. The results of the evaluation indicate that the go-around control system can successfully transition the airplane to a climb configuration from any initiation point during the glide-slope track or the flare maneuver prior to touchdown
Charging of DMSP/F6 spacecraft in aurora on 10 January 1983
Spacecraft charging has been widely observed in geosynchronous orbit on the ATS-5 and ATS-6 pair and on the SCATHA spacecraft. An adequate theory for explaining the observations exist. Neither the data or theory can be exported to low polar orbit and its drastically different environment. Evidence of charging on the DMSP F6 spacecraft is presented. A simple model is set up explaining the observations. Two independent instruments on the spacecraft showed charging to a moderate (44 volts) negative potential. The selection spectrometer showed a flux of 2 billion electrons per sq. cm. sec. ster. peaked at 9.5 keV. This was marginally sufficient to overcome the flux of cold ambient ions. Charging calculations are presented showing where simplications are justified and where serious uncertainties exist. More serious charging is predicted for the Shuttle in polar orbit
Design, development, and flight test of a demonstration advanced avionics system
Ames Research Center initiated a program in 1975 to provide the critical information required for the design of integrated avionics suitable for general aviation. The program emphasized the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. Design considerations included cost, reliability, maintainability, and modularity. As a final step, a demonstration advanced avionics system (DAAS) was designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. A functional description of the DAAS, including a description of the system architecture, is presented and the program and flight test results are briefly reviewed
Flight-test of the glide-slope track and flare-control laws for an automatic landing system for a powered-lift STOL airplane
An automatic landing system was developed for the Augmentor Wing Jet STOL Research Airplane to establish the feasibility and examine the operating characteristics of a powered-lift STOL transport flying a steep, microwave landing system (MLS) glide slope to automatically land on a STOL port. The flight test results address the longitudinal aspects of automatic powered lift STOL airplane operation including glide slope tracking on the backside of the power curve, flare, and touchdown. Three different autoland control laws were evaluated to demonstrate the tradeoff between control complexity and the resulting performance. The flight test and simulation methodology used in developing conventional jet transport systems was applied to the powered-lift STOL airplane. The results obtained suggest that an automatic landing system for a powered-lift STOL airplane operating into an MLS-equipped STOL port is feasible. However, the airplane must be provided with a means of rapidly regulation lift to satisfactorily provide the glide slope tracking and control of touchdown sink rate needed for automatic landings
Development and validation of the crew-station system-integration research facility
The various issues associated with the use of integrated flight management systems in aircraft were discussed. To address these issues a fixed base integrated flight research (IFR) simulation of a helicopter was developed to support experiments that contribute to the understanding of design criteria for rotorcraft cockpits incorporating advanced integrated flight management systems. A validation experiment was conducted that demonstrates the main features of the facility and the capability to conduct crew/system integration research
A flight investigation of a terminal area navigation and guidance concept for STOL aircraft
A digital avionics system referred to as STOLAND has been test-flown in the NASA CV-340 to obtain performance data for time-controlled guidance in the manual flight director mode. The advanced system components installed in the cockpit included an electronic attitude director indicator and an electronic multifunction display. Navigation guidance and control computations were all performed in the digital computer. Approach paths were flown which included a narrow 180-deg turn and a 1-min, 5-deg straight-in approach to the 30-m altitude go-around point. Results are presented for 20 approaches: (1) blended radio/inertial navigation using TACAN and a microwave scanning beam landing guidance system (MODILS) permitted a smooth transition from area navigation (TACAN) to precision terminal navigation (MODILS), (2) guidance system (flight director) performance measured at an altitude of 30.5 m was within that prescribed for category II CTOL operations on a standard runway, and (3) time of arrival at a point about 2 mi from touchdown was about 4 sec plus or minus sec later than the computed nominal arrival time
A flight investigation of a terminal area navigation and guidance concept for STOL aircraft
A digital avionics system was installed in the CV-340 transport aircraft. Flight tests were made to obtain preliminary performance data in the manual flight director mode using time controlled guidance. These tests provide a basis for selection of terminal area guidance, navigation, and control system concepts for short haul aircraft and for investigating operational procedures
The development of a model to infer precipitation from microwave measurements
To permit the inference of precipitation amounts from radiometric measurements, a radiative interaction model was developed. This model uses a simple computational scheme to determine the effects of rain upon brightness temperatures and can be used with a statistical inversion procedure to invert for rain rate. Precipitating cloud models was also developed and used with the microwave model for frequencies of 19.35 and 37 GHz to determine the variability of the microwave-rain rate relationship on a global and seasonal basis
- …