14,611 research outputs found

    Superconducting re-entrant cavity transducer for a resonant bar gravitational radiation antenna

    Get PDF
    Copyright @ American Institute of PhysicsA 10‐GHz superconducting niobium re‐entrant cavity parametric transducer was developed for use in a cryogenic 1.5‐tonne Nb resonant bar gravitational radiation antenna. The transducer has a very high electrical Q (6×105 at 4.2 K), and was operated at high cavity fields without degrading the Q. A very high electromechanical coupling between the antenna and the transducer was therefore achieved. The highest coupling attained, constrained by the available pump power, was 0.11. If the transducer were to be operated in conjunction with a wideband impedance matching element, an antenna bandwidth comparable to the frequency of the antenna would be attained. The temperature dependence of the Q of the transducer was in good agreement with theory. At temperatures above about 6 K the Q was degraded by the increase in the BCS surface resistance, while at lower temperatures the Q was limited by radiative losses

    Strichartz estimates for the Schr\"odinger equation on polygonal domains

    Full text link
    We prove Strichartz estimates with a loss of derivatives for the Schr\"odinger equation on polygonal domains with either Dirichlet or Neumann homogeneous boundary conditions. Using a standard doubling procedure, estimates the on polygon follow from those on Euclidean surfaces with conical singularities. We develop a Littlewood-Paley squarefunction estimate with respect to the spectrum of the Laplacian on these spaces. This allows us to reduce matters to proving estimates at each frequency scale. The problem can be localized in space provided the time intervals are sufficiently small. Strichartz estimates then follow from a result of the second author regarding the Schr\"odinger equation on the Euclidean cone.Comment: 12 page

    Sparticle Mass Spectrum in Grand Unified Theories

    Full text link
    We carry out a detailed analysis of sparticle mass spectrum in supersymmetric grand unified theories. We consider the spectroscopy of the squarks and sleptons in SU(5) and SO(10) grand unified theories, and show how the underlying supersymmetry breaking parameters of these theories can be determined from a measurement of different sparticle masses. This analysis is done analytically by integrating the one-loop renormalization group equations with appropriate boundary conditions implied by the underlying grand unified gauge group. We also consider the impact of non-universal gaugino masses on the sparticle spectrum, especially the neutralino and chargino masses which arise in supersymmetric grand unified theories with non-minimal gauge kinetic function. In particular, we study the interrelationships between the squark and slepton masses which arise in grand unified theories at the one-loop level, which can be used to distinguish between the different underlying gauge groups and their breaking pattern to the Standard Model gauge group. We also comment on the corrections that can affect these one-loop results.Comment: 19 pages, 6 figure

    Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors

    Get PDF
    We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3×10^5 to 6.5×10^3. By using this technique adequate optical spring damping can be obtained to damp parametric instability predicted for advanced laser interferometer gravitational-wave detectors

    On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers

    Full text link
    This paper reports a comprehensive study on the gravitational wave (GW) background from compact binary coalescences. We consider in our calculations newly available observation-based neutron star and black hole mass distributions and complete analytical waveforms that include post-Newtonian amplitude corrections. Our results show that: (i) post-Newtonian effects cause a small reduction in the GW background signal; (ii) below 100 Hz the background depends primarily on the local coalescence rate r0r_0 and the average chirp mass and is independent of the chirp mass distribution; (iii) the effects of cosmic star formation rates and delay times between the formation and merger of binaries are linear below 100 Hz and can be represented by a single parameter within a factor of ~ 2; (iv) a simple power law model of the energy density parameter ΩGW(f) f2/3\Omega_{GW}(f) ~ f^{2/3} up to 50-100 Hz is sufficient to be used as a search template for ground-based interferometers. In terms of the detection prospects of the background signal, we show that: (i) detection (a signal-to-noise ratio of 3) within one year of observation by the Advanced LIGO detectors (H1-L1) requires a coalescence rate of r0=3(0.2)Mpc3Myr1r_0 = 3 (0.2) Mpc^{-3} Myr^{-1} for binary neutron stars (binary black holes); (ii) this limit on r0r_0 could be reduced 3-fold for two co-located detectors, whereas the currently proposed worldwide network of advanced instruments gives only ~ 30% improvement in detectability; (iii) the improved sensitivity of the planned Einstein Telescope allows not only confident detection of the background but also the high frequency components of the spectrum to be measured. Finally we show that sub-threshold binary neutron star merger events produce a strong foreground, which could be an issue for future terrestrial stochastic searches of primordial GWs.Comment: A few typos corrected to match the published version in MNRA
    corecore