24,650 research outputs found
The Temperature Evolution of the Out-of-Plane Correlation Lengths of Charge-Stripe Ordered La(1.725)Sr(0.275)NiO(4)
The temperature dependence of the magnetic order of stripe-ordered
La(1.725)Sr(0.275)NiO(4) is investigated by neutron diffraction. Upon cooling,
the widths if the magnetic Bragg peaks are observed to broaden. The degree of
broadening is found to be very different for l = odd-integer and l =
even-integer magnetic peaks. We argue that the observed behaviour is a result
of competition between magnetic and charge order.Comment: 3 figure
Skeleton and fractal scaling in complex networks
We find that the fractal scaling in a class of scale-free networks originates
from the underlying tree structure called skeleton, a special type of spanning
tree based on the edge betweenness centrality. The fractal skeleton has the
property of the critical branching tree. The original fractal networks are
viewed as a fractal skeleton dressed with local shortcuts. An in-silico model
with both the fractal scaling and the scale-invariance properties is also
constructed. The framework of fractal networks is useful in understanding the
utility and the redundancy in networked systems.Comment: 4 pages, 2 figures, final version published in PR
Keeping a Single Qubit Alive by Experimental Dynamic Decoupling
We demonstrate the use of dynamic decoupling techniques to extend the
coherence time of a single memory qubit by nearly two orders of magnitude. By
extending the Hahn spin-echo technique to correct for unknown, arbitrary
polynomial variations in the qubit precession frequency, we show analytically
that the required sequence of pi-pulses is identical to the Uhrig dynamic
decoupling (UDD) sequence. We compare UDD and CPMG sequences applied to a
single Ca-43 trapped-ion qubit and find that they afford comparable protection
in our ambient noise environment.Comment: 5 pages, 5 figure
The Eliashberg Function of Amorphous Metals
A connection is proposed between the anomalous thermal transport properties
of amorphous solids and the low-frequency behavior of the Eliashberg function.
By means of a model calculation we show that the size and frequency dependence
of the phonon mean-free-path that has been extracted from measurements of the
thermal conductivity in amorphous solids leads to a sizeable linear region in
the Eliashberg function at small frequencies. Quantitative comparison with
recent experiments gives very good agreement.Comment: 4pp., REVTeX, 1 uuencoded ps fig. Original posting had a corrupted
raw ps fig appended. Published as PRB 51, 689 (1995
Improving technology transfer through national systems of innovation: climate relevant innovation-system builders (CRIBs)
The Technology Executive Committee (TEC) of the United Nations Framework Convention on Climate Change (UNFCCC) recently convened a workshop seeking to understand how strengthening national systems of innovation (NSIs) might help to foster the transfer of climate technologies to developing countries. This article reviews insights from the literatures on Innovation Studies and Socio-Technical Transitions to demonstrate why this focus on fostering innovation systems has potential to be more transformative as an international policy mechanism for climate technology transfer than anything the UNFCCC has considered to date. Based on insights from empirical research, the article also articulates how the existing architecture of the UNFCCC Technology Mechanism could be usefully extended by supporting the establishment of CRIBs (climate relevant innovation-system builders) in developing countries – key institutions focused on nurturing the climate-relevant innovation systems and building technological capabilities that form the bedrock of transformative, climate-compatible technological change and development
Recommended from our members
Effective elements of cognitive behaviour therapy for psychosis: results of a novel type of subgroup analysis based on principal stratification
Background. Meta-analyses show that cognitive behaviour therapy for psychosis (CBT-P) improves distressing positive symptoms. However, it is a complex intervention involving a range of techniques. No previous study has assessed the delivery of the different elements of treatment and their effect on outcome. Our aim was to assess the differential effect of type of treatment delivered on the effectiveness of CBT-P, using novel statistical methodology.
Method. The Psychological Prevention of Relapse in Psychosis (PRP) trial was a multi-centre randomized controlled trial (RCT) that compared CBT-P with treatment as usual (TAU). Therapy was manualized, and detailed evaluations of therapy delivery and client engagement were made. Follow-up assessments were made at 12 and 24 months. In a planned analysis, we applied principal stratification (involving structural equation modelling with finite mixtures) to estimate intention-to-treat (ITT) effects for subgroups of participants, defined by qualitative and quantitative differences in receipt of therapy, while maintaining the constraints of randomization.
Results. Consistent delivery of full therapy, including specific cognitive and behavioural techniques, was associated with clinically and statistically significant increases in months in remission, and decreases in psychotic and affective symptoms. Delivery of partial therapy involving engagement and assessment was not effective.
Conclusions. Our analyses suggest that CBT-P is of significant benefit on multiple outcomes to patients able to engage in the full range of therapy procedures. The novel statistical methods illustrated in this report have general application to the evaluation of heterogeneity in the effects of treatment
Optimized Dynamical Decoupling for Time Dependent Hamiltonians
The validity of optimized dynamical decoupling (DD) is extended to
analytically time dependent Hamiltonians. As long as an expansion in time is
possible the time dependence of the initial Hamiltonian does not affect the
efficiency of optimized dynamical decoupling (UDD, Uhrig DD). This extension
provides the analytic basis for (i) applying UDD to effective Hamiltonians in
time dependent reference frames, for instance in the interaction picture of
fast modes and for (ii) its application in hierarchical
DD schemes with pulses about two perpendicular axes in spin space. to
suppress general decoherence, i.e., longitudinal relaxation and dephasing.Comment: 5 pages, no figure
Upon the existence of short-time approximations of any polynomial order for the computation of density matrices by path integral methods
In this article, I provide significant mathematical evidence in support of
the existence of short-time approximations of any polynomial order for the
computation of density matrices of physical systems described by arbitrarily
smooth and bounded from below potentials. While for Theorem 2, which is
``experimental'', I only provide a ``physicist's'' proof, I believe the present
development is mathematically sound. As a verification, I explicitly construct
two short-time approximations to the density matrix having convergence orders 3
and 4, respectively. Furthermore, in the Appendix, I derive the convergence
constant for the trapezoidal Trotter path integral technique. The convergence
orders and constants are then verified by numerical simulations. While the two
short-time approximations constructed are of sure interest to physicists and
chemists involved in Monte Carlo path integral simulations, the present article
is also aimed at the mathematical community, who might find the results
interesting and worth exploring. I conclude the paper by discussing the
implications of the present findings with respect to the solvability of the
dynamical sign problem appearing in real-time Feynman path integral
simulations.Comment: 19 pages, 4 figures; the discrete short-time approximations are now
treated as independent from their continuous version; new examples of
discrete short-time approximations of order three and four are given; a new
appendix containing a short review on Brownian motion has been added; also,
some additional explanations are provided here and there; this is the last
version; to appear in Phys. Rev.
- …