782 research outputs found
All Optical Formation of an Atomic Bose-Einstein Condensate
We have created a Bose-Einstein condensate of 87Rb atoms directly in an
optical trap. We employ a quasi-electrostatic dipole force trap formed by two
crossed CO_2 laser beams. Loading directly from a sub-doppler laser-cooled
cloud of atoms results in initial phase space densities of ~1/200.
Evaporatively cooling through the BEC transition is achieved by lowering the
power in the trapping beams over ~ 2 s. The resulting condensates are F=1
spinors with 3.5 x 10^4 atoms distributed between the m_F = (-1,0,1) states.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Evanescent-wave trapping and evaporative cooling of an atomic gas near two-dimensionality
A dense gas of cesium atoms at the crossover to two-dimensionality is
prepared in a highly anisotropic surface trap that is realized with two
evanescent light waves. Temperatures as low as 100nK are reached with 20.000
atoms at a phase-space density close to 0.1. The lowest quantum state in the
tightly confined direction is populated by more than 60%. The system offers
intriguing prospects for future experiments on degenerate quantum gases in two
dimensions
Quantum entanglement using trapped atomic spins
We propose an implementation for quantum logic and computing using trapped
atomic spins of two different species, interacting via direct magnetic
spin-spin interaction. In this scheme, the spins (electronic or nuclear) of
distantly spaced trapped neutral atoms serve as the qubit arrays for quantum
information processing and storage, and the controlled interaction between two
spins, as required for universal quantum computing, is implemented in a three
step process that involves state swapping with a movable auxiliary spin.Comment: minor revisions with an updated discussion on adibatic tranportation
of trapped qubit, 5 pages, 3 figs, resubmitted to PR
Motional Squashed States
We show that by using a feedback loop it is possible to reduce the
fluctuations in one quadrature of the vibrational degree of freedom of a
trapped ion below the quantum limit. The stationary state is not a proper
squeezed state, but rather a ``squashed'' state, since the uncertainty in the
orthogonal quadrature, which is larger than the standard quantum limit, is
unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum
Correlations and Fluctuations" of J. Opt.
Multiple micro-optical atom traps with a spherically aberrated laser beam
We report on the loading of atoms contained in a magneto-optic trap into
multiple optical traps formed within the focused beam of a CO_{2} laser. We
show that under certain circumstances it is possible to create a linear array
of dipole traps with well separated maxima. This is achieved by focusing the
laser beam through lenses uncorrected for spherical aberration. We demonstrate
that the separation between the micro-traps can be varied, a property which may
be useful in experiments which require the creation of entanglement between
atoms in different micro-traps. We suggest other experiments where an array of
these traps could be useful.Comment: 10 pages, 3 figure
All-Optical Production of a Degenerate Fermi Gas
We achieve degeneracy in a mixture of the two lowest hyperfine states of
Li by direct evaporation in a CO laser trap, yielding the first
all-optically produced degenerate Fermi gas. More than atoms are
confined at temperatures below K at full trap depth, where the Fermi
temperature for each state is K. This degenerate two-component mixture
is ideal for exploring mechanisms of superconductivity ranging from Cooper
pairing to Bose condensation of strongly bound pairs.Comment: 4 pgs RevTeX with 2 eps figs, to be published in Phys. Rev. Let
Resolved-sideband Raman cooling to the ground state of an optical lattice
We trap neutral Cs atoms in a two-dimensional optical lattice and cool them
close to the zero-point of motion by resolved-sideband Raman cooling. Sideband
cooling occurs via transitions between the vibrational manifolds associated
with a pair of magnetic sublevels and the required Raman coupling is provided
by the lattice potential itself. We obtain mean vibrational excitations
\bar{n}_x \approx \bar{n}_y \approx 0.01, corresponding to a population \sim
98% in the vibrational ground state. Atoms in the ground state of an optical
lattice provide a new system in which to explore quantum state control and
subrecoil laser coolingComment: PDF file, 13 pages including 3 figure
Fictitious Magnetic Resonance by Quasi-Electrostatic Field
We propose a new kind of spin manipulation method using a {\it fictitious}
magnetic field generated by a quasi-electrostatic field. The method can be
applicable to every atom with electron spins and has distinct advantages of
small photon scattering rate and local addressability. By using a
laser as a quasi-electrostatic field, we have experimentally demonstrated the
proposed method by observing the Rabi-oscillation of the ground state hyperfine
spin F=1 of the cold atoms and the Bose-Einstein condensate.Comment: 5 pages, 5 figure
Nonperturbative and perturbative treatments of parametric heating in atom traps
We study the quantum description of parametric heating in harmonic potentials
both nonperturbatively and perturbatively, having in mind atom traps. The first
approach establishes an explicit connection between classical and quantum
descriptions; it also gives analytic expressions for properties such as the
width of fractional frequency parametric resonances. The second approach gives
an alternative insight into the problem and can be directly extended to take
into account nonlinear effects. This is specially important for shallow traps.Comment: 12 pages, 2 figure
- …
