853 research outputs found
Three-body Faddeev-Alt-Grassberger-Sandhas approach to direct nuclear reactions
Momentum space three-body Faddeev-like equations are used to calculate
elastic, transfer and charge exchange reactions resulting from the scattering
of deuterons on 12C and 16O or protons on 13C and 17O; 12C and 16O are treated
as inert cores. All possible reactions are calculated in the framework of the
same model space. Comparison with previous calculations based on approximate
methods used in nuclear reaction theory is discussed.Comment: 10 pages, 13 figures, to be published in Phys. Rev.
Adiabatic Fidelity for Atom-Molecule Conversion in a Nonlinear Three-Level \Lambda-system
We investigate the dynamics of the population transfer for atom-molecule
three-level -system on stimulated Raman adiabatic passage(STIRAP). We
find that the adiabatic fidelity for the coherent population trapping(CPT)
state or dark state, as the function of the adiabatic parameter, approaches to
unit in a power law. The power exponent however is much less than the
prediction of linear adiabatic theorem. We further discuss how to achieve
higher adiabatic fidelity for the dark state through optimizing the external
parameters of STIRAP. Our discussions are helpful to gain higher atom-molecule
conversion yield in practical experiments.Comment: 4 pages, 5 figure
Green's Function for Nonlocal Potentials
The single-particle nuclear potential is intrinsically nonlocal. In this
paper, we consider nonlocalities which arise from the many-body and fermionic
nature of the nucleus. We investigate the effects of nonlocality in the nuclear
potential by developing the Green's function for nonlocal potentials. The
formal Green's function integral is solved analytically in two different limits
of the wavelength as compared to the scale of nonlocality. Both results are
studied in a quasi-free limit. The results illuminate some of the basic effects
of nonlocality in the nuclear medium.Comment: Accepted for publication in J. Phys.
Feshbach Resonance Cooling of Trapped Atom Pairs
Spectroscopic studies of few-body systems at ultracold temperatures provide
valuable information that often cannot be extracted in a hot environment.
Considering a pair of atoms, we propose a cooling mechanism that makes use of a
scattering Feshbach resonance. Application of a series of time-dependent
magnetic field ramps results in the situation in which either zero, one, or two
atoms remain trapped. If two atoms remain in the trap after the field ramps are
completed, then they have been cooled. Application of the proposed cooling
mechanism to optical traps or lattices is considered.Comment: 5 pages, 3 figures; v.2: major conceptual change
Vortex line in a neutral finite-temperature superfluid Fermi gas
The structure of an isolated vortex in a dilute two-component neutral
superfluid Fermi gas is studied within the context of self-consistent
Bogoliubov-de Gennes theory. Various thermodynamic properties are calculated
and the shift in the critical temperature due to the presence of the vortex is
analyzed. The gapless excitations inside the vortex core are studied and a
scheme to detect these states and thus the presence of the vortex is examined.
The numerical results are compared with various analytical expressions when
appropriate.Comment: 8 pages, 6 embedded figure
Measurement of interaction energy near a Feshbach resonance in a 6Li Fermi gas
We investigate the strongly interacting regime in an optically trapped Li
Fermi mixture near a Feshbach resonance. The resonance is found at G
in good agreement with theory. Anisotropic expansion of the gas is interpreted
by collisional hydrodynamics. We observe an unexpected and large shift (G)
between the resonance peak and both the maximum of atom loss and the change of
sign of the interaction energy.Comment: 4 pages, 4 figure
Quantitative comparison between theoretical predictions and experimental results for the BCS-BEC crossover
Theoretical predictions for the BCS-BEC crossover of trapped Fermi atoms are
compared with recent experimental results for the density profiles of Li.
The calculations rest on a single theoretical approach that includes pairing
fluctuations beyond mean field. Excellent agreement with experimental results
is obtained. Theoretical predictions for the zero-temperature chemical
potential and gap at the unitarity limit are also found to compare extremely
well with Quantum Monte Carlo simulations and with recent experimental results.Comment: 4 pages, 3 eps figure
Comment on ``the Klein-Gordon Oscillator''
The different ways of description of the particle with oscillator-like
interaction are considered. The results are in conformity with the previous
paper of S. Bruce and P. Minning.Comment: LaTeX file, 5p
Indirect decoherence in optical lattices and cold gases
The interaction of two--level atoms with a common heat bath leads to an
effective interaction between the atoms, such that with time the internal
degrees of the atoms become correlated or even entangled. If part of the atoms
remain unobserved this creates additional indirect decoherence for the selected
atoms, on top of the direct decoherence due to the interaction with the heat
bath. I show that indirect decoherence can drastically increase and even
dominate the decoherence for sufficiently large times. I investigate indirect
decoherence through thermal black body radiation quantitatively for atoms
trapped at regular positions in an optical lattice as well as for atoms at
random positions in a cold gas, and show how indirect coherence can be
controlled or even suppressed through experimentally accessible parameters.Comment: 12 pages, 1 figur
The decay of photoexcited quantum systems: a description within the statistical scattering model
The decay of photoexcited quantum systems (examples are photodissociation of
molecules and autoionization of atoms) can be viewed as a half-collision
process (an incoming photon excites the system which subsequently decays by
dissociation or autoionization). For this reason, the standard statistical
approach to quantum scattering, originally developed to describe nuclear
compound reactions, is not directly applicable. Using an alternative approach,
correlations and fluctuations of observables characterizing this process were
first derived in [Fyodorov YV and Alhassid Y 1998 Phys. Rev. A 58, R3375]. Here
we show how the results cited above, and more recent results incorporating
direct decay processes, can be obtained from the standard statistical
scattering approach by introducing one additional channel.Comment: 7 pages, 2 figure
- …
