1,054 research outputs found

    Financing of a College Education: Theory vs. Reality

    Get PDF

    Trends in Meeting College Costs Over the Past Ten Years

    Get PDF

    Speeding Up the Heart? Traditional and New Perspectives on HCN4 Function

    Get PDF
    The sinoatrial node (SAN) is the primary pacemaker of the heart and is responsible for generating the intrinsic heartbeat. Within the SAN, spontaneously active pacemaker cells initiate the electrical activity that causes the contraction of all cardiomyocytes. The firing rate of pacemaker cells depends on the slow diastolic depolarization (SDD) and determines the intrinsic heart rate (HR). To adapt cardiac output to varying physical demands, HR is regulated by the autonomic nervous system (ANS). The sympathetic and parasympathetic branches of the ANS innervate the SAN and regulate the firing rate of pacemaker cells by accelerating or decelerating SDD–a process well-known as the chronotropic effect. Although this process is of fundamental physiological relevance, it is still incompletely understood how it is mediated at the subcellular level. Over the past 20 years, most of the work to resolve the underlying cellular mechanisms has made use of genetically engineered mouse models. In this review, we focus on the findings from these mouse studies regarding the cellular mechanisms involved in the generation and regulation of the heartbeat, with particular focus on the highly debated role of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 in mediating the chronotropic effect. By focusing on experimental data obtained in mice and humans, but not in other species, we outline how findings obtained in mice relate to human physiology and pathophysiology and provide specific information on how dysfunction or loss of HCN4 channels leads to human SAN disease

    A Cross‐Shaped Monomer as Building Block for Molecular Textiles

    Get PDF
    The exploration of new materials is timeless. Especially 2D-materials have gotten much interest in the last decades. This work proposes a new route towards a fascinating class of 2D materials: molecular textiles. The suggested bottom-up approach focuses on the 2D self-assembly of a cross-shaped monomer at the water/air interface. A 3D cross-shaped motive was designed, synthesized, and characterized, which exhibits the required structural features, i. e., static and dynamic control. Analysis of the cross-shaped motive by 1^{1}H-NMR spectroscopy, X-ray structure, and chiral stationary phase HPLC proved the rigidity and stability of the system, and thus also its potential for the here suggested new strategy towards molecular textiles. Three variants of a Schiff-base precursor pair functionalized monomer were synthesized and characterized by 1^{1}H-NMR spectroscopy, 13^{13}C-NMR spectroscopy, and mass spectrometry. Finally, the network formation of the monomer is shown to be triggered by deprotonation of its ammonium salt, corroborated with FT-IR analysis
    • 

    corecore