2,854 research outputs found

    A 10-year strategy for the banana sector in Africa

    Get PDF
    The Banana 2008 Conference held in Mombasa, Kenya, provided the opportunity for developing a strategy to help propel the banana industry as an important engine of growth in Africa. It was attended by more than 300 participants from the research and development arena, the private sector, and the business development, production and processing, policymaking, and marketing sectors

    Tunable Fano effect in parallel-coupled double quantum dot system

    Full text link
    With the help of the Green function technique and the equation of motion approach, the electronic transport through a parallel-coupled double quantum dot(DQD) is theoretically studied. Owing to the inter-dot coupling, the bonding and antibonding states of the artificial quantum-dot-molecule may constitute an appropriate basis set. Based on this picture, the Fano interference in the conductance spectra of the DQD system is readily explained. The possibility of manipulating the Fano lineshape in the tunnelling spectra of the DQD system is explored by tuning the dot-lead coupling, the inter-dot coupling, the magnetic flux threading the ring connecting dots and leads, and the flux difference between two sub-rings. It has been found that by making use of various tuning, the direction of the asymmetric tail of Fano lineshape may be flipped by external fields, and the continuous conductance spectra may be magnetically manipulated with lineshape retained. More importantly, by adjusting the magnetic flux, the function of two molecular states can be exchanged, giving rise to a swap effect, which might play a role as a qubit in the quantum computation.Comment: 9 pages, 10 figure

    Integrated pest management (IPM) of soybean

    Get PDF

    Current-induced Spin Polarization in Two-Dimensional Hole Gas

    Full text link
    We investigate the current-induced spin polarization in the two-dimensional hole gas (2DHG) with the structure inversion asymmetry. By using the perturbation theory, we re-derive the effective kk-cubic Rashba Hamiltonian for 2DHG and the generalized spin operators accordingly. Then based on the linear response theory we calculate the current-induced spin polarization both analytically and numerically with the disorder effect considered. We have found that, quite different from the two-dimensional electron gas, the spin polarization in 2DHG depends linearly on Fermi energy in the low doping regime, and with increasing Fermi energy, the spin polarization may be suppressed and even changes its sign. We predict a pronounced peak of the spin polarization in 2DHG once the Fermi level is somewhere between minimum points of two spin-split branches of the lowest light-hole subband. We discuss the possibility of measurements in experiments as regards the temperature and the width of quantum wells.Comment: 13 pages, 8 figures, submitted to PR

    Coherent spin control by electromagnetic vacuum fluctuations

    Full text link
    In coherent control, electromagnetic vacuum fluctuations usually cause coherence loss through irreversible spontaneous emission. However, since the dissipation via emission is essentially due to correlation of the fluctuations, when emission ends in a superposition of multiple final states, correlation between different pathways may build up if the "which-way" information is not fully resolved (i.e., the emission spectrum is broader than the transition energy range). Such correlation can be exploited for spin-flip control in a Λ\Lambda-type three-level system, which manifests itself as an all-optical spin echo in nonlinear optics with two orders of optical fields saved as compared with stimulated Raman processes. This finding represents a new class of optical nonlinearity induced by electromagnetic vacuum fluctuations.Comment: 7 pages including 5 figure

    Generation and Evolution of Spin Entanglement in NRQED

    Full text link
    A complete analysis on the generation of spin entanglement from NRQED is presented. The results of entanglement are obtained with relativistic correction to the leading order of (v/c)^2. It is shown that to this order the degree of entanglement of a singlet state does not change under time evolution whereas the triplet state can change.Comment: 8 pages, 1 figure, to appear in Phys. Rev.
    corecore