1,451 research outputs found

    Persistent hypertriglyceridemia in statin-treated patients with type 2 diabetes mellitus

    Get PDF
    Purpose: This paper reports the results of an audit that assessed the prevalence of residual hypertriglyceridemia and the potential need for intensified management among patients with statin-treated type 2 diabetes mellitus (T2DM) in primary care in the UK. Patients and methods: A cross-sectional, observational, systematic audit of patients with diagnosed diabetes from 40 primary care practices was undertaken. The audit collected basic demographic information and data on prescriptions issued during the preceding 4 months. T2DM patients were stratified according to the proportion that attained European Society of Cardiology treatment targets. Results: The audit collected data from 14,652 patients with diagnosed diabetes: 89.5% (n = 13,108) of the total cohort had T2DM. Of the people with T2DM, 22.2% (2916) were not currently receiving lipid-lowering therapy. Up to approximately 80% of these people showed evidence of dyslipidemia. Among the group that received lipid-lowering therapy, 94.7% (9647) were on statin monotherapy, which was usually simvastatin (69.5% of patients receiving statin monotherapy; 6707). The currently available statins were prescribed, with the most common dose being 40 mg simvastatin (44.2%; 4267). Irrespective of the statin used, around half of the patients receiving statin monotherapy did not attain the European Society of Cardiology treatment targets for triglycerides, low-density lipoprotein, high-density lipoprotein, and total cholesterol. Conclusion: T2DM patients managed in UK primary care commonly show persistent lipid abnormalities. Clinicians need to optimize compliance with lipid-lowering and other medications. Clinicians also need to consider intensifying statin regimens, prescribing additional lipid-modifying therapies, and specific treatments aimed at triglyceride lowering to improve dyslipidemia control in statin-treated patients with T2DM

    Fast Non-Adiabatic Two Qubit Gates for the Kane Quantum Computer

    Full text link
    In this paper we apply the canonical decomposition of two qubit unitaries to find pulse schemes to control the proposed Kane quantum computer. We explicitly find pulse sequences for the CNOT, swap, square root of swap and controlled Z rotations. We analyze the speed and fidelity of these gates, both of which compare favorably to existing schemes. The pulse sequences presented in this paper are theoretically faster, higher fidelity, and simpler than existing schemes. Any two qubit gate may be easily found and implemented using similar pulse sequences. Numerical simulation is used to verify the accuracy of each pulse scheme

    Error Rate of the Kane Quantum Computer CNOT Gate in the Presence of Dephasing

    Full text link
    We study the error rate of CNOT operations in the Kane solid state quantum computer architecture. A spin Hamiltonian is used to describe the system. Dephasing is included as exponential decay of the off diagonal elements of the system's density matrix. Using available spin echo decay data, the CNOT error rate is estimated at approsimately 10^{-3}.Comment: New version includes substantial additional data and merges two old figures into one. (12 pages, 6 figures
    • …
    corecore